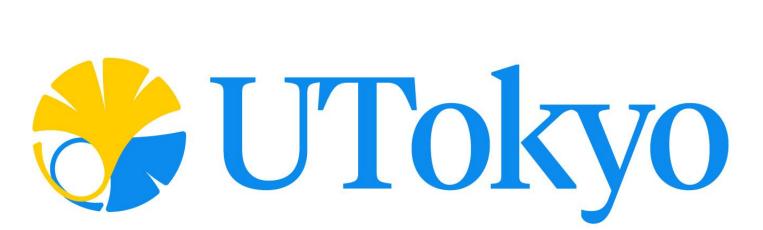
Evaluation of Sparse Autoencoders through the Representation of Polysemous Words

Gouki Minegishi, Hiroki Furuta, Yusuke Iwasawa, Yutaka Matsuo

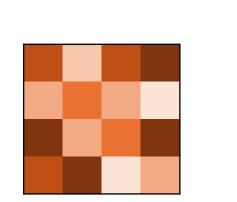


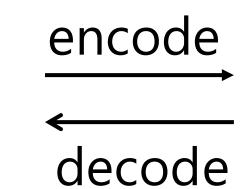
Introduction and Motivation

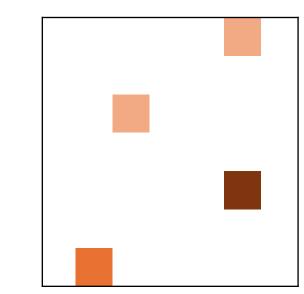
Sparse Autoencoders:

Mapping the polysemantic activation of LLM into sparse features

- LLM Activations
- ✓ Dense Activations
- ✓ Uninterpretable
- ✓ Polysemantic







- SAE features
- ✓ Sparse Activations
- ✓ Interpretable
- ✓ Monosemantic

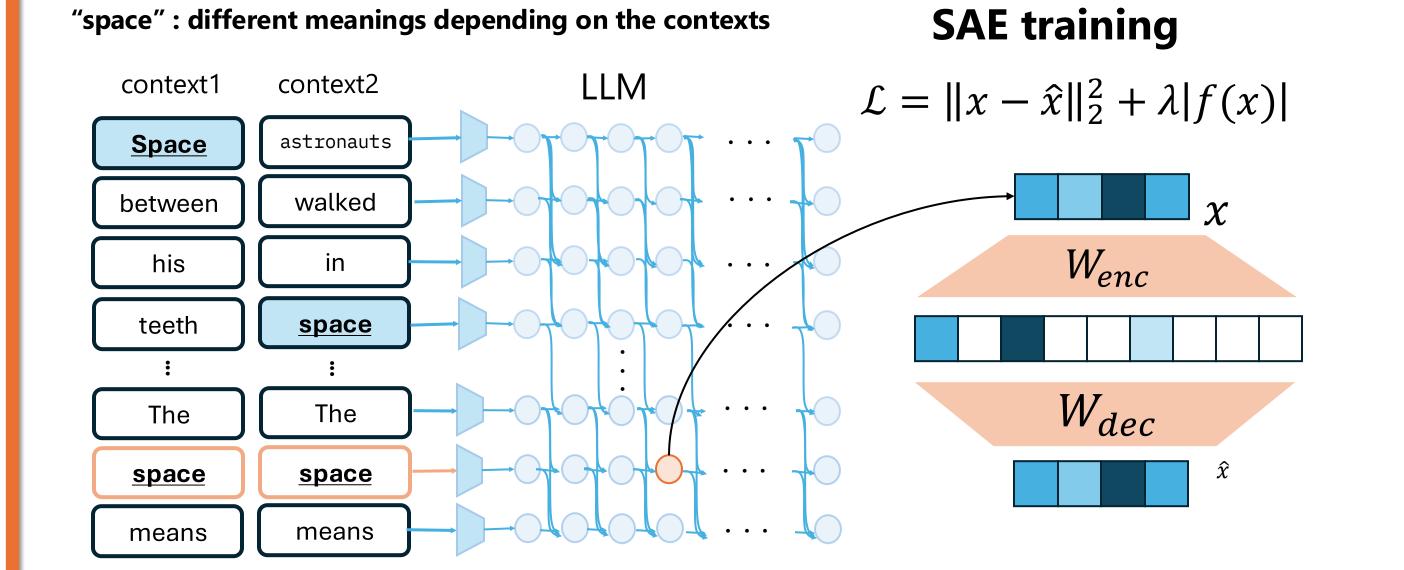
However,

how to effectively evaluate SAE features remains undefined.

Method: PS-Eval

evaluates if SAE features activate correctly for polysemous words [1] using a confusion matrix

Prompt: {context}. The {target word} means



Confusion matrix

	Mono-context	Poly-context
Same Max	Same meaning,	Different meaning,
Activated	same feature	same feature
Feature	(True Positive)	(False Positive)
Different Max	Same meaning,	Different meaning,
Activated	different feature	different feature
Feature	(False Negative)	(True Negative)

Experiment

Do SAE features reflect word meanings?

Logit Lens:

Use the LLM's unembedding matrix to extract the SAE feature logit

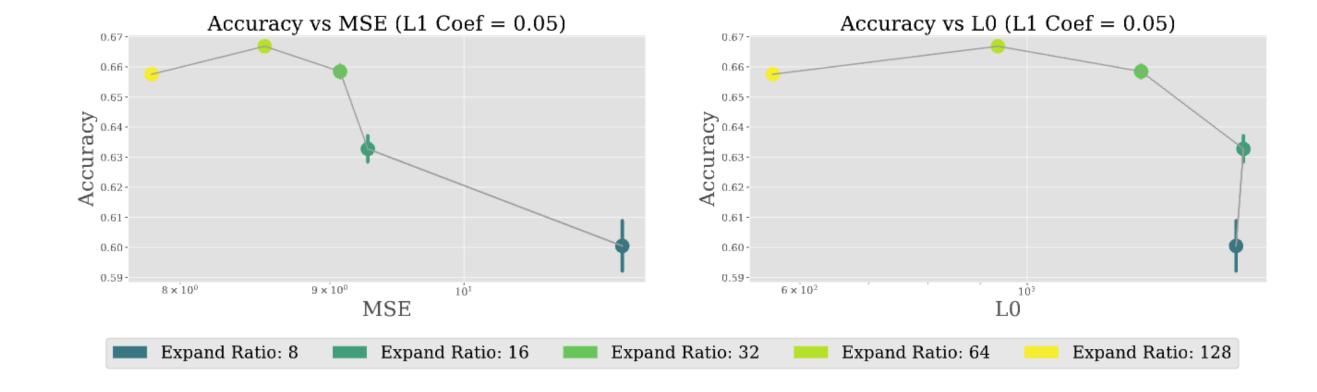
$$logit_1 = W_U a_{max}^1, \quad logit_2 = W_U a_{max}^2$$

Context 1: The astronauts walked in outer "space". Context 2: The "space" between his teeth.

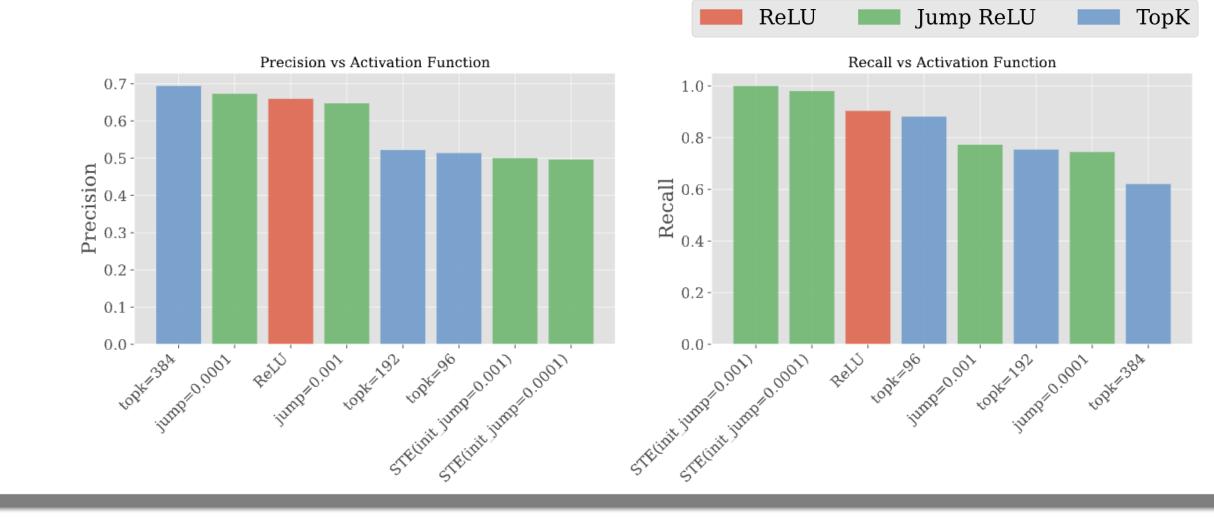
	poly-context (space)				
	Context 1		Context 2		
rank	tokens	logits	tokens	logits	
1	flight	1.224	Layout	0.894	
2	plane	0.957	occupied	0.882	
3	shuttle	0.938	spaces	0.853	
4	gravity	0.937	vacated	0.846	
5	craft	0.920	space	0.825	
6	Engineers	0.876	<u>shuttle</u>	0.799	
7	planes	0.869	occupancy	0.798	

Which SAEs best disentangle polysemy?

Wider SAE is Better



Activation function



Where in LLMs is polysemy disentangled?

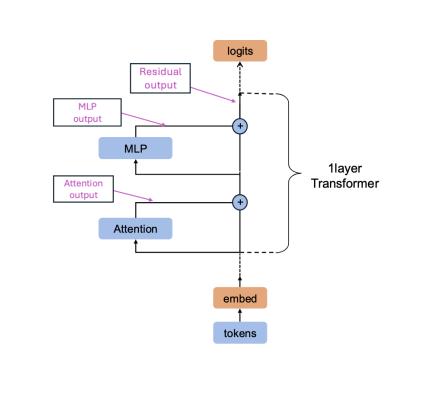
Polysemy is Captured in Deeper Layer

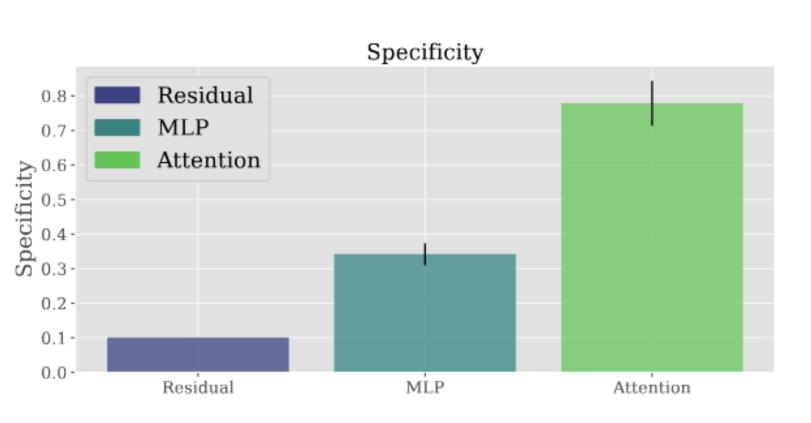
Specificity =
$$\frac{TN}{TN+FP}$$

$$\frac{1}{1000} = \frac{TN}{TN+FP}$$

$$\frac{1}{1000} = \frac{1}{1000} = \frac{1}{1000}$$

Polysemy is Captured in Attention





Specificity vs L0

L0