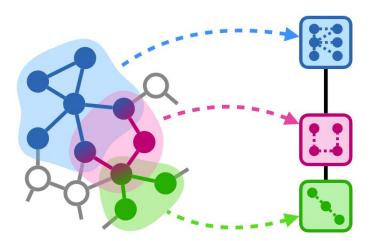
Generalizing Weisfeiler-Lehman Kernels to Subgraphs

Dongkwan Kim and Alice Oh ICLR 2025

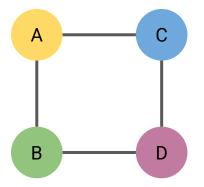


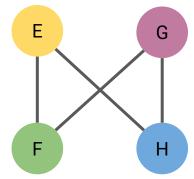
Existing GNNs fail to capture arbitrary interactions between and within subgraph structures

Existing GNNs fail to capture arbitrary interactions between and within subgraph structures

 Example 1: Multi-hop structures around subgraphs are not fully encoded by a S2N model due to the approximation of global structures

Existing GNNs fail to capture arbitrary interactions between and within subgraph structures

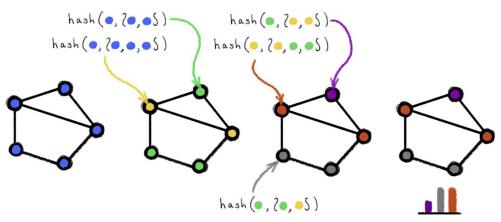

- Example 1: Multi-hop structures around subgraphs are not fully encoded by a
 S2N model due to the approximation of global structures
- Example 2: Multi-hop structures around subgraphs are not fully encoded by a weak GNN on the whole global graph


Existing GNNs fail to capture arbitrary interactions between and within subgraph structures

- Example 1: Multi-hop structures around subgraphs are not fully encoded by a
 S2N model due to the approximation of global structures
- Example 2: Multi-hop structures around subgraphs are not fully encoded by a weak GNN (as powerful as the WL isomorphism test) on the whole graph

Isomorphic Graphs and the WL Test

Two graphs are *isomorphic* if their structures are *identical*, meaning there is a *one-to-one mapping between their nodes* that preserves connectivity



Isomorphic Graphs and the WL Test

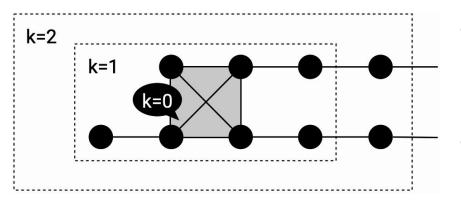
Two graphs are *isomorphic* if their structures are *identical*, meaning there is a *one-to-one mapping between their nodes* that preserves connectivity

The **WL Test** is an efficient algorithm to distinguish **non-isomorphic graphs** by capturing structural difference

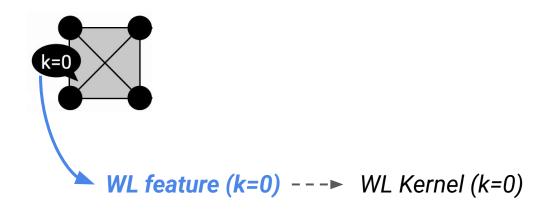
Multi-hop structures around subgraphs are **not fully encoded** by a **weak GNN (as powerful as the WL isomorphism test) on the whole global graph**

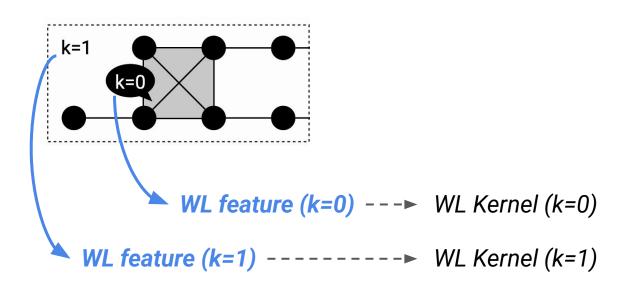
Multi-hop structures around subgraphs are **not fully encoded** by a **weak GNN (as powerful as the WL isomorphism test) on the whole global graph**

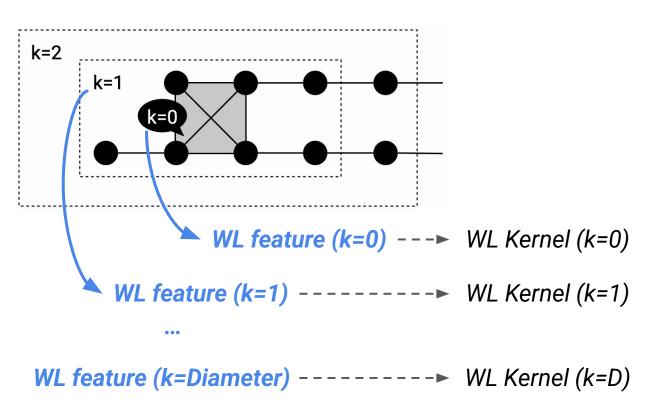
Proposition about expressiveness (Informal)

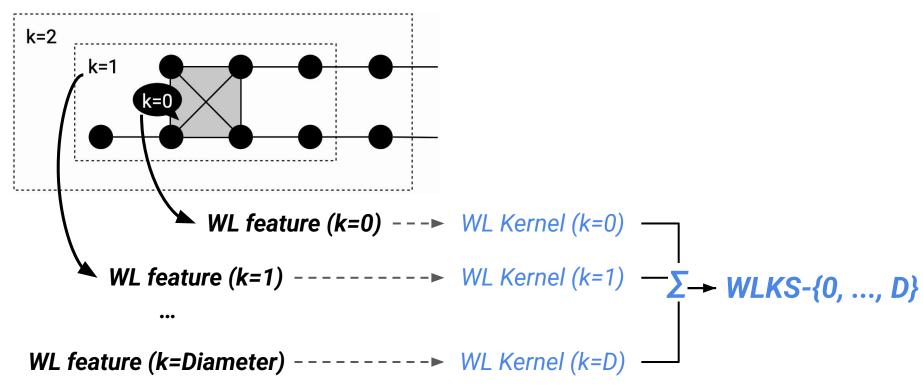

WL test on (k+1)-hop structures is not the same as WL test on k-hop structures

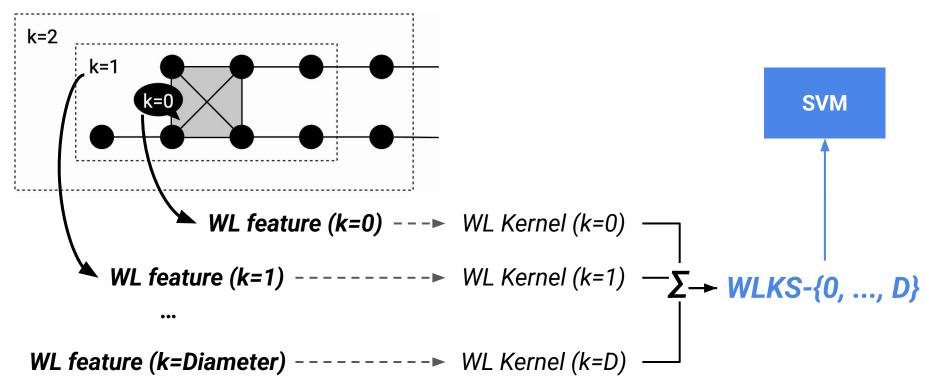
Multi-hop structures around subgraphs are **not fully encoded** by a **weak GNN (as powerful as the WL isomorphism test) on the whole global graph**


Proposition about expressiveness (Informal)


WL test on (k+1)-hop structures is not the same as WL test on k-hop structures


It implies that a weak K-layer GNN do not represent all the structural information of a smaller L-hop structure (L < K) from the perspective of graph isomorphism




- Combining the WL test results (features)
 on multi-hop neighborhoods captures
 both local and global structures
- We use the kernel method (WL kernel) on WL features

Performance of WLKS

WLKS-{0, D} outperforms the best-performing baseline in 5 out of 8 datasets

Model	PPI-BP	HPO-Neuro	HPO-Metab	EM-User	Density	Cut-Ratio	Coreness	Component
SubGNN	$59.9_{\pm 2.4}$	$63.2_{\pm 1.0}$	$53.7_{\pm 2.3}$	$81.4_{\pm 4.6}$	$91.9_{\pm 1.6}$	$62.9_{\pm 3.9}$	$65.9_{\pm 9.2}$	$95.8_{\pm 9.8}$
GLASS	$61.9_{\pm0.7}$	$68.5_{\pm 0.5}$	$61.4_{\pm 0.5}$	$88.8_{\pm 0.6}$	$93.0_{\pm 0.9}$	$93.5_{\pm 0.6}$	$84.0_{\pm 0.9}$	$100.0_{\pm 0.0}$
VSubGAE	-	$65.2_{\pm1.4}$	$56.3_{\pm 0.9}$	$85.0_{\pm 3.5}$	-	-	-	-
SSNP-NN	$63.6_{\pm0.7}$	$68.2_{\pm 0.4}$	$58.7_{\pm 1.0}$	$88.8_{\pm 0.5}$	-	-	-	-
S2N+0 $_{\mathrm{GCNII}}$	$63.5_{\pm 2.4}$	$66.4_{\pm 1.1}$	$61.6_{\pm 1.7}$	$86.5_{\pm 3.2}$	$67.2_{\pm 2.4}$	$56.0_{\pm0.0}$	$57.0_{\pm 4.9}$	$100.0_{\pm0.0}$
S2N+A $_{\mathrm{GCNII}}$	$63.7_{\pm 2.3}$	$68.4_{\pm 1.0}$	$63.2_{\pm 2.7}$	$89.0_{\pm 1.6}$	$93.2_{\pm 2.6}$	$56.0_{\pm0.0}$	$85.7_{\pm 5.8}$	$100.0_{\pm0.0}$
WLKS- $\{0, D\}$	$64.8_{\pm 0.0}$	$65.3_{\pm 0.0}$	$57.9_{\pm 0.0}$	$91.8_{\pm 0.0}$	$96.0_{\pm 0.0}$	$60.0_{\pm 0.0}$	$91.3_{\pm 0.0}$	$100.0_{\pm 0.0}$

Performance of WLKS by k

WLKS-{0} and WLKS-{D} perform well independently in certain datasets, but their combination makes the better performance

Model	PPI-BP	HPO-Neuro	HPO-Metab	EM-User	Density	Cut-Ratio	Coreness	Component
$WLKS-\{0,D\}$	64.8	65.3	57.9	91.8	96.0	60.0	91.3	100.0
WLKS-{0}	34.0	31.4	26.4	67.3	96.0	36.0	87.0	100.0
$WLKS-\{1\}$	39.0	OOM	OOM	79.6	68.0	56.0	39.1	100.0
$WLKS-\{2\}$	64.2	OOM	OOM	89.8	68.0	56.0	39.1	100.0
$\operatorname{WLKS-}\{D\}$	64.2	65.1	57.9	89.8	68.0	56.0	39.1	100.0