

Learning LLM-as-a-Judge For Preference Alignment

Ziyi Ye¹, Xiangsheng Li², Qiuchi Li³, Qingyao Ai¹, Yujia Zhou¹, Wei Shen², Dong Yan², Yiqun Liu¹

¹Department of Computer Science and Technology, Tsinghua University

²Baichuan Al

³University of Copenhagen

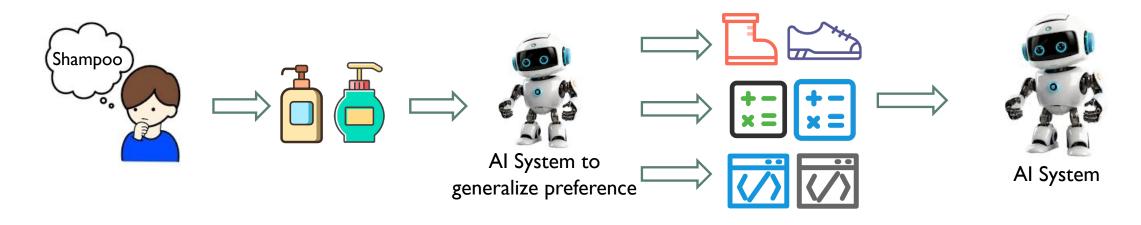
2025.3.28

Catalogue

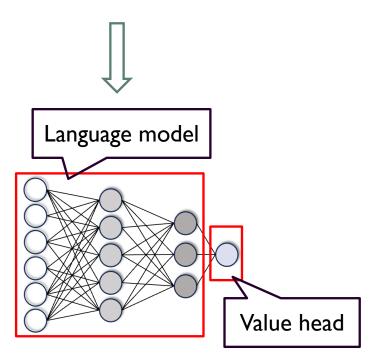
- Background
- Method
- Experimental Results

■ Learning from preference feedback is a common practice for AI system.

We need Al agents to generalize human preference for online and infinite tasks.



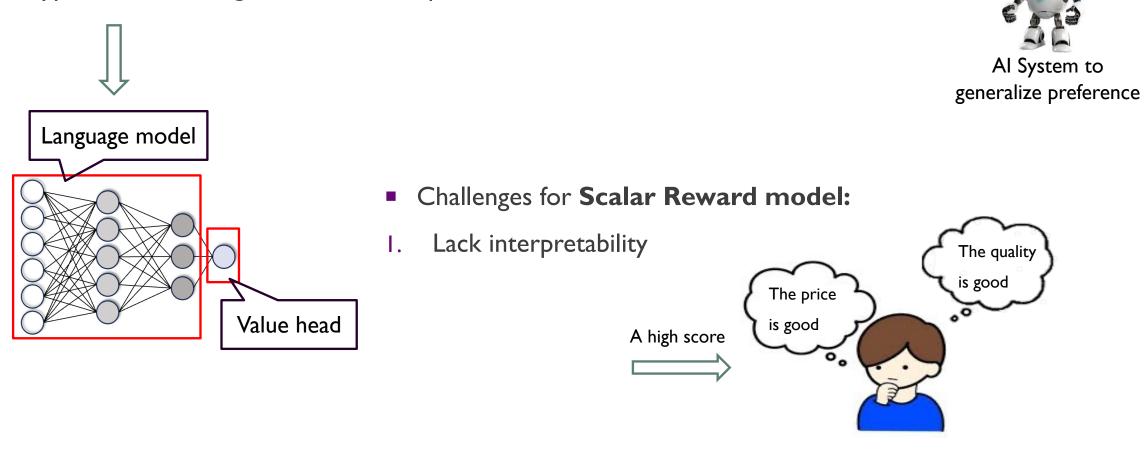
A typical solution to generalize human preference in RLHF -> Scalar Reward model



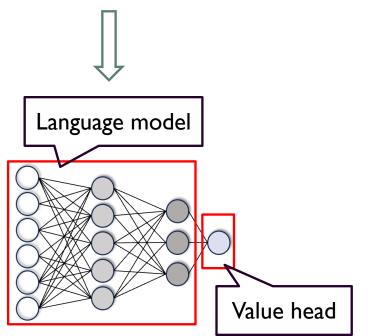
Al System to generalize preference

- Challenges for Scalar Reward model:
- I. Lack interpretability
- 2. Susceptible to biases

■ A typical solution to generalize human preference in RLHF -> Scalar Reward model



A typical solution to generalize human preference in RLHF -> Scalar Reward model



Al System to generalize preference

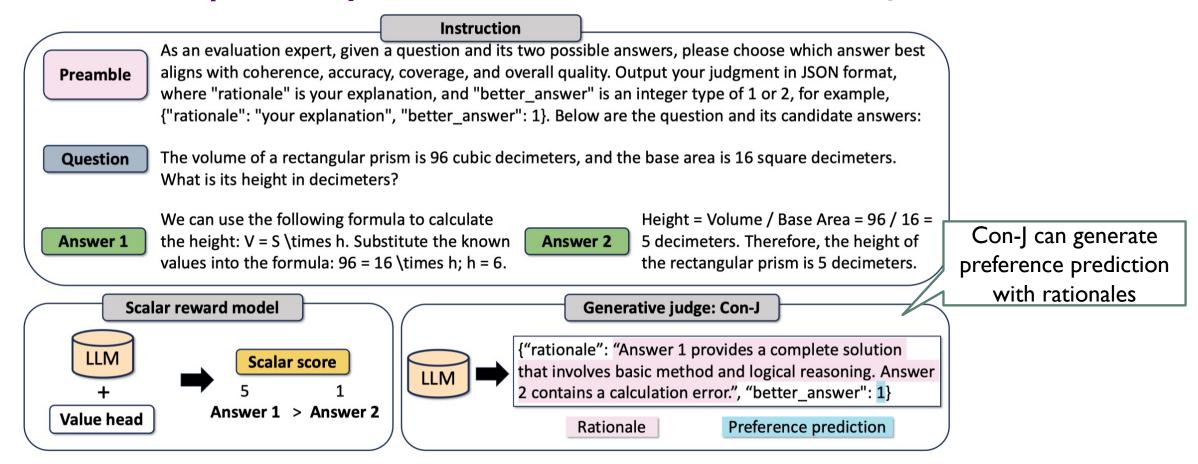
Challenges for Scalar Reward model:

2. Susceptible to biases in datasets

What Al learns: Shampoo with yellow color is better

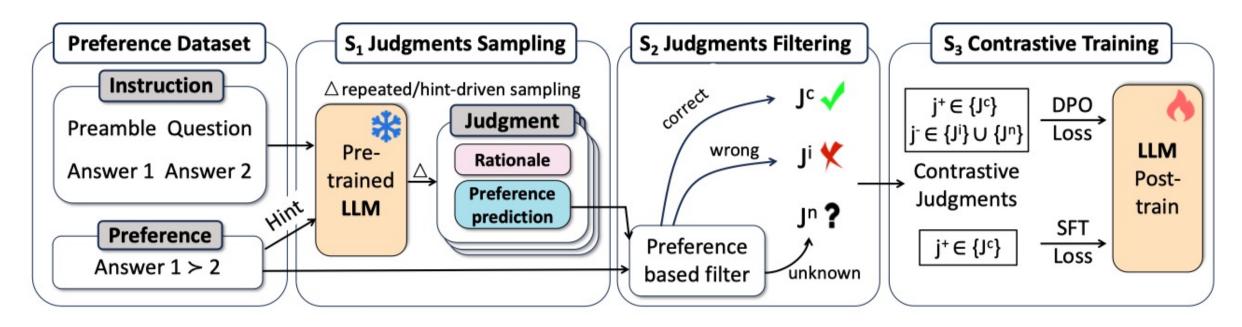
Motivation

Address interpretability and robustness in one shot with Con-J

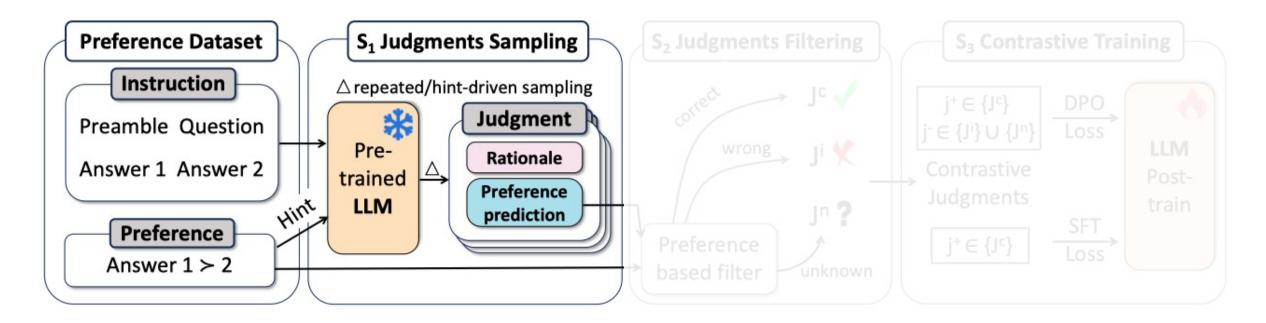


- S₁ Judgments Sampling
- S₂ Judgements Filtering
- S₃ Contrastive Training

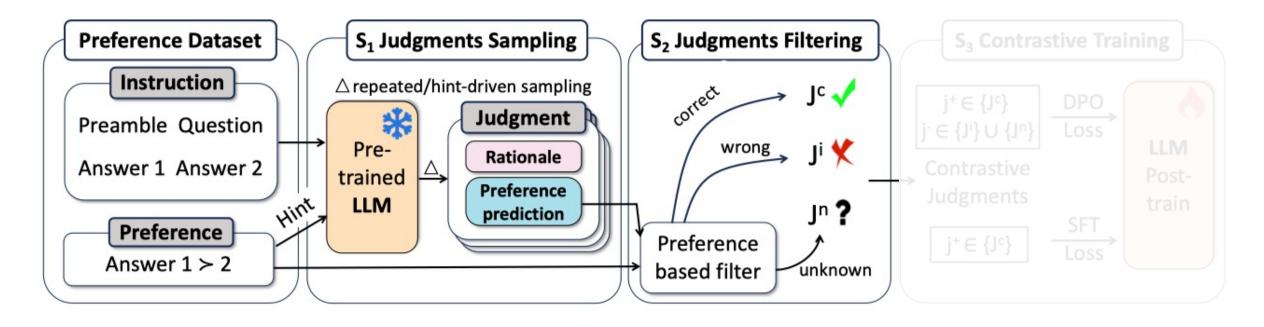
Con-J leverages the LLM's pre-existing judgment and bootstraps this ability with human preference



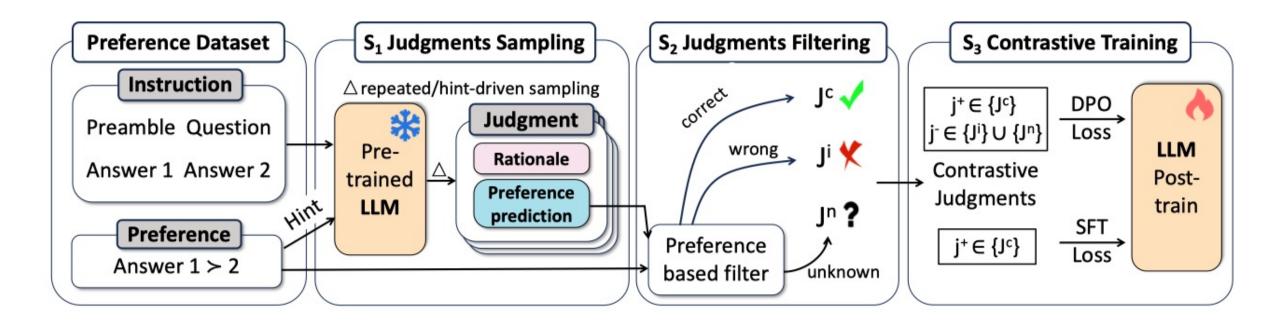
- S₁ Judgments Sampling
 - Repeated sampling
 - Hint-driven sampling -> compel the LLM to generate judgments that prefer specific answers



- S₂ Judgements Filtering
 - Positive: the preference prediction corresponding to the keyword "better answer" is correct
 - Negative: the preference prediction is wrong / the format of the answer is incorrect



- S₃ Contrastive Training
 - Train the LLM using DPO loss on positive and negative judgments and SFT loss on positive judgments



Closed source version

Model	Creation	Math	Code
GPT-4o	55.6*	74.8*	68.1*
SM (point-wise)	69.4^{*}	84.8	69.4
SM (pair-wise)	69.2^{*}	84.6	69.6
Con-J	72.4	85.0	70.1

Con-J outperforms scalar reward model (SM) trained on the same corpus and GPT-40

Model	Creation	Math	Code
Con-J untrained	53.6*	63.4*	61.7*
Con-J w/o Hint	61.3^{*}	77.4*	68.2
Con-J w/o DPO	54.6^{*}	64.2*	63.5*
Con-J	72.4	85.0	70.1

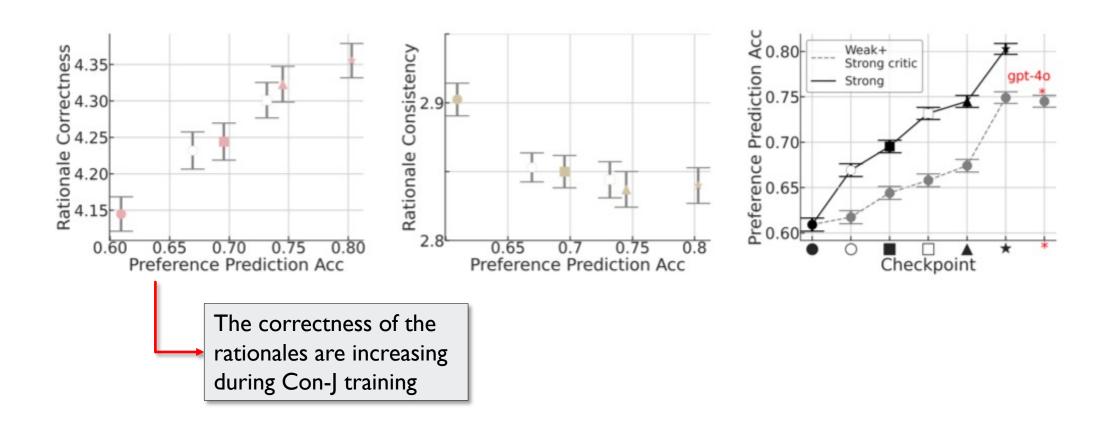
Con-J outperforms its variants w/o DPO and w/o hint-driven sampling

Open source version

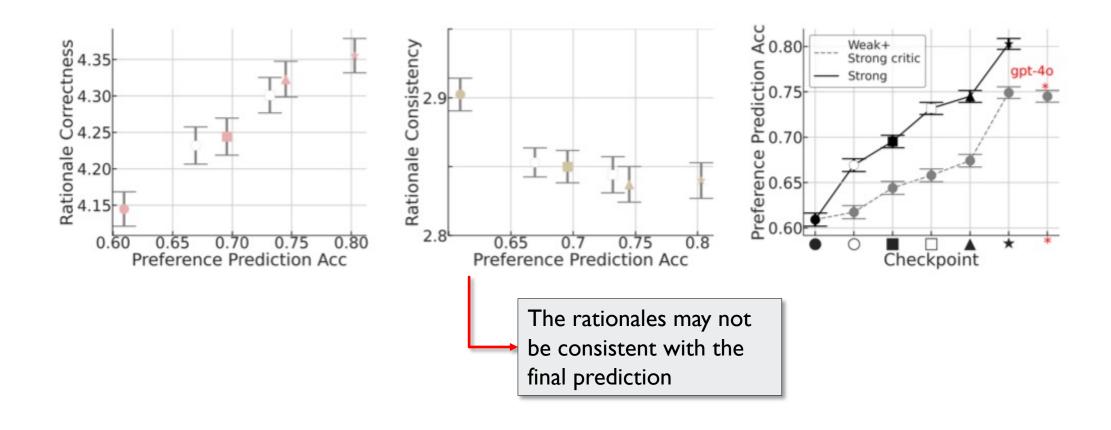
Model	Infinity-	Ultra-	PKU-	Reward-Bench			
	Preference	Feedback	SafeRLHF	Chat	Chat-H	Safety	Reasoning
Llama3.1-8B	59.0	62.9	66.4	80.7	49.8	64.0	68.1
Llama3.1-70B	64.0	71.4	67.6	97.2	70.2	82.8	86.0
Qwen2-7B	59.0	64.5	67.2	91.3	44.8	73.6	69.0
Qwen2.5-72B	70.0	66.0	58.7	86.6	61.4	74.5	90.7
Auto-J	69.0	63.9	66.9	93.0	40.0	65.5	50.5
Prometheus 2	68.0	63.3	63.0	85.5	49.1	77.1	76.5
GPT-4o	75.0	72.2	69.6	95.3	74.3	87.6	86.9
Con-J (ours)	81.0	73.0	<u>68.4</u>	91.3	79.6	88.0	<u>87.1</u>

Con-J outperforms or is comparable to state-of-the-art LLM-as-a-Judge

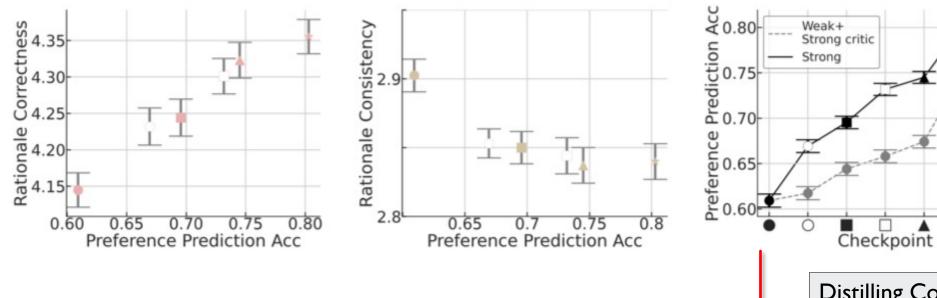
Interpretability of Con-J: is the rationale generated by Con-J useful and reliable?



Interpretability of Con-J: is the rationale generated by Con-J useful and reliable?

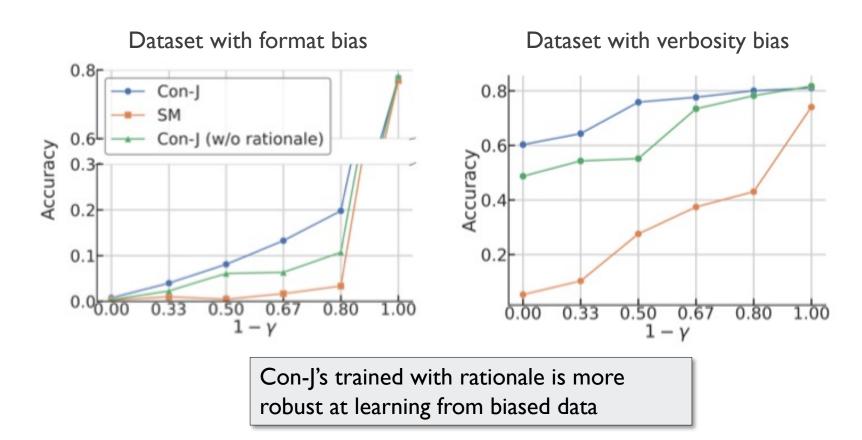


Interpretability of Con-J: is the rationale generated by Con-J useful and reliable?

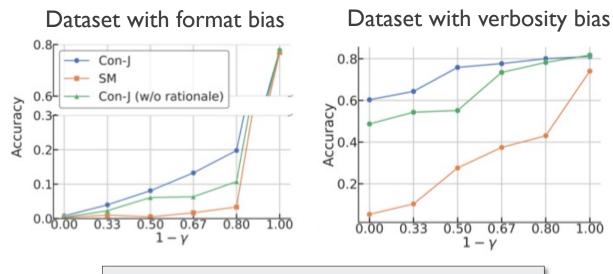


Distilling Con-J's rationale can achieve comparable performance to GPT-40.

- Robustness of Con-J:
 - Why is Con-J more robust than Con-J w/o rationale and scalar model (SM)?



- Robustness of Con-J:
 - Why is Con-J more robust than Con-J w/o rationale and scalar model (SM)?



Con-J's trained with rationale is more robust at learning from biased data

Training with rationales bring robustness against bias.

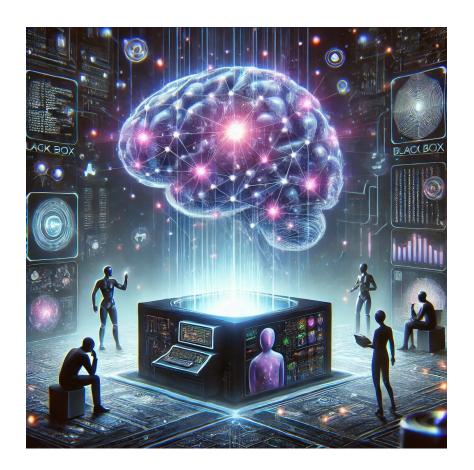
$$P_{ heta}(j_y \mid p) = \sum_{j_r} P_{ heta}(j_y \mid j_r, p) \, P_{ heta}(j_r \mid p)$$

LLM-as-a-Judge resists bias with LLM's prior learning from pretraining. -> a regularization effect

$$\ell(heta) = \ell_{data}(heta) + rac{\lambda}{2}|| heta - heta_0||^2$$

Takeaways

- Con-J -> LLM-as-a-Judge to address the interpretability and vulnerability of scalar reward models
- 2. How to train Con-J -> self-bootstrap, elicit what LLM already knows but supervised by human preference
- 3. Result -> Con-J not only improves its accuracy and robustness in preference prediction but can also generate high-quality rationales
- 4. Insight -> Can we improve AI system in its interpretability and robustness with human preference Signals?



Thank you! Welcome to our session!

Ziyi Ye¹, Xiangsheng Li², Qiuchi Li³, Qingyao Ai¹, Yujia Zhou¹, Wei Shen², Dong Yan², Yiqun Liu¹

¹Department of Computer Science and Technology, Tsinghua University

²Baichuan Al

³University of Copenhagen

2025.3.28