MediConfusion: Can you trust your Al radiologist?

USC Center on AI Foundations for the Sciences (AIF4S)

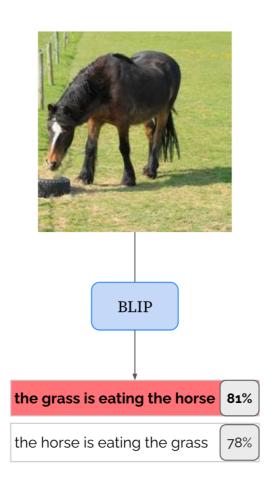
Is AI the future of health care?

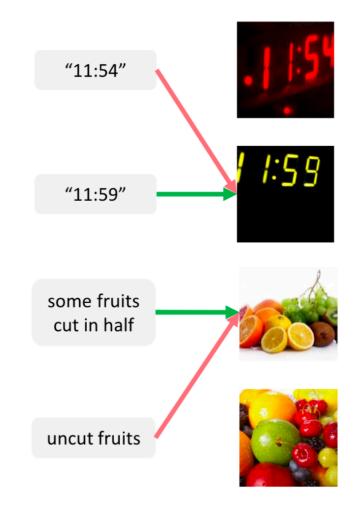
Recently AI models has achieved impressive performance

But there is still some concerns

The Shaky Foundations of Foundation Models in Healthcare

Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging


Limitations of Existing MLLMs


Known issues with MLLMs visual encoders

Detecting relations between objects

Capturing spatial information

Search for images with similar encoding but clear visual differences

New Eval Benchmark: MediConfusion

0	Gemini 2	% 28.41
1	Random Guessing	% 25
2	01	% 24.43
3	Gemini 1.5 Pro	% 19.89
4	GPT-4o	% 18.75
5	Llama 3.2	% 15.34
6	InstructBLIP	% 12.50
7	Molmo 2	% 9.66
8	LLaVA	% 9.09
9	Claude 3 Opus	% 8.52
10	BLIP-2	% 6.82
11	Molmo 72B	% 6.82
12	RadFM	% 5.68
13	Med-Flamingo	% 4.55
14	LLaVA-Med	% 1.14

Al's performance is worse than random guessing!

How does MediConfusion work?

One question with two options
Two confusing images
Different answers

Indiv. score: total correct answers
Confusion: samples with the same answers
Set score: Correct answer to both

A - Tonsillar herniation to the level of C3 with effacement of...

B - Mass effect of a lesion on the foramen of Monro.

MRI of the brain?

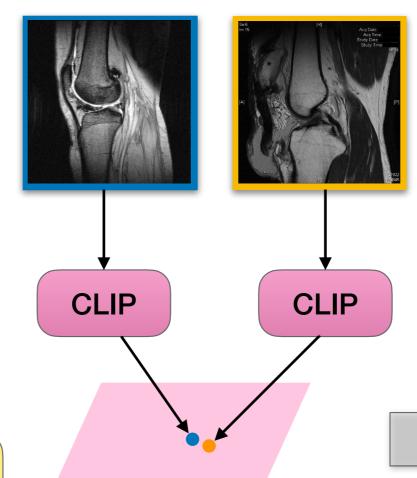
A - Tonsillar herniation to the level of C3 with effacement of meriation to the level of C3 with effacement of...

Q: What is the primary abnormality observed in the sagittal T1 weighted

Individual score: 1
Confusion: 1

Set score: 0

The idea behind finding image pairs


Background: CLIP

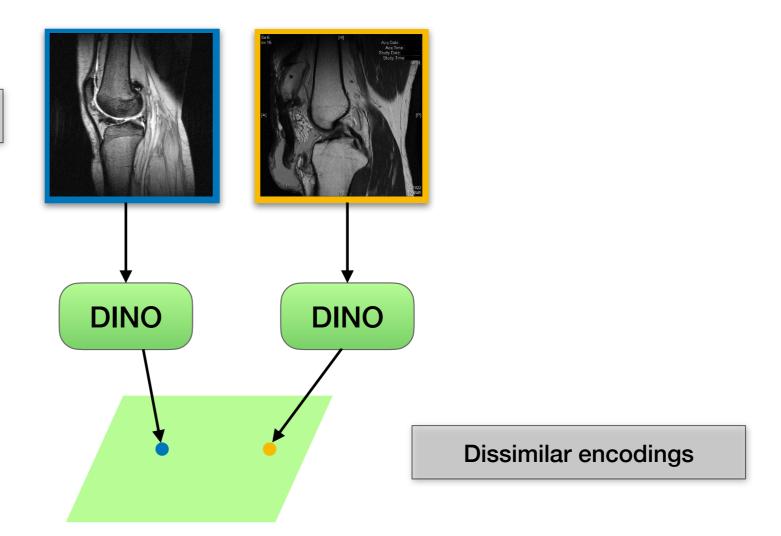
Provides embeddings for text and image

Image encoder of many MLLMs

Trained with a contrastive loss to align text and image embedding

Clearly different images

BioMedCLIP: Finetuned for medical applications

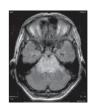

Highly similar encoding

Background: DINO

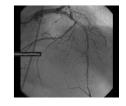
Provides robust image representations

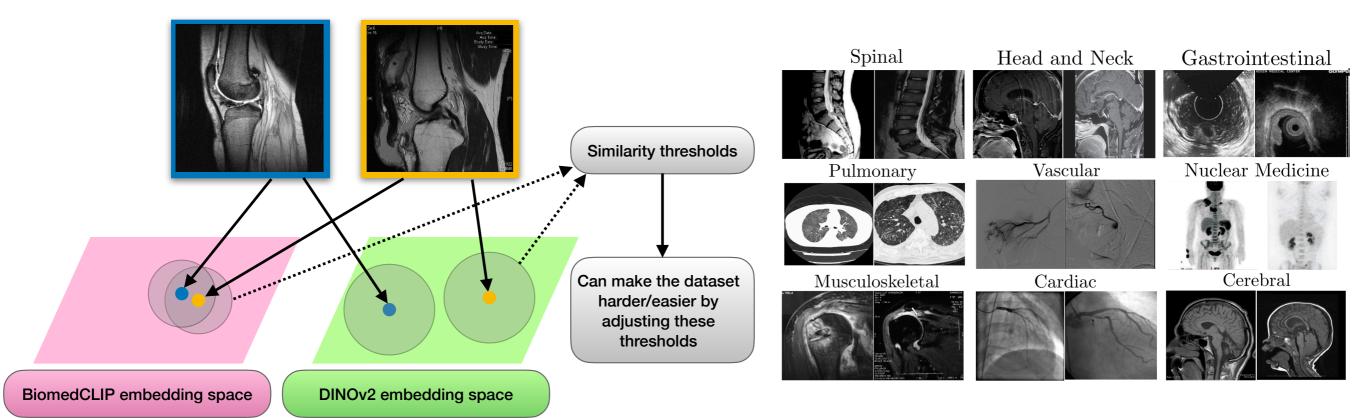
Its embeddings can capture visual details

Clearly different images



Discovering confusing pairs


Pick a dataset



Search for images with:

Similar encoding

Clear visual differences

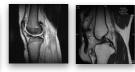
VQA Generation

Image captions

Gradient-echo-based MRI from a patient with recurrent t-GCT...

Sagittal MRI scan showing complete rupture of the ...

Prompt


Your task is to create a two-choice question based on the above captions for which the answer is different for the two images.

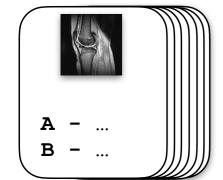
Q: What is the primary pathology in the MRI scan?

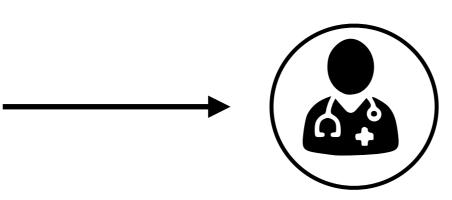
A: Recurrent t-GCT ...

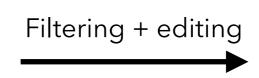
B: Complete rupture of .

Radiologist feedback

We need to filter the questions


Quality


Correctness


Relevance

Confusing pairs

Radiologist

MEDICONFUSION

Performance

	Set acc. (%)			Indiv. acc.(%)				Confusion (%)				Best		
Method	MC	GD	FF	PS	MC	GD	FF	PS	MC	GD	FF	PS	Set acc.	Indiv. acc.
LLaVA	8.52	9.09	1.70	1.14	50.57	51.70	15.06	49.72	85.47	85.80	76.00	97.16	9.09	51.70
BLIP-2	0.57	<u>6.82</u>	1.70	3.98	22.16	50.28	11.65	<u>51.42</u>	92.19	86.93	86.67	94.89	6.82	51.42
InstructBLIP	<u>12.50</u>	7.95	2.84	3.41	51.99	<u>53.12</u>	19.60	50.57	80.35	90.34	87.23	94.32	12.50	53.12
DeepSeek-VL2	15.91	<u>16.48</u>	4.55	6.25	<u>54.26</u>	<u>54.26</u>	16.19	49.43	77.19	75.57	50.0	86.36	16.48	54.26
Molmo	<u>9.66</u>	0.57	0.57	5.11	52.84	49.72	14.77	51.42	86.21	98.3	83.33	92.61	9.66	52.84
LLaVA-Med	0.00	0.00	1.14	1.14	23.58	49.72	18.75	49.72	100.00	99.43	95.92	97.16	1.14	49.72
RadFM	0.57	1.14	0.57	<u>5.68</u>	35.90	<u>50.28</u>	16.19	48.58	97.54	98.30	95.12	85.80	5.68	50.28
Med-Flamingo	1.14	2.27	0.57	<u>4.55</u>	47.73	50.00	17.05	<u>51.99</u>	98.75	95.45	94.89	98.30	4.55	51.99
GPT-4o	18.75	-	-	-	56.25	-	-	-	75.00	-	-	-	18.75	56.25
o1	21.59	-	-	-	57.95	-	-	-	72.99	-	-	-	21.59	57.95
Claude 3 Opus	8.52	-	-	-	50.85	-	-	-	84.09	-	-	-	8.52	50.85
Gemini 1.5 Pro	19.89	-	-	-	51.14	-	-	-	58.52	-	-	-	19.89	51.14
Gemini 2.0 Flash	29.55	-	-	-	61.93	-	-	-	67.05	-	-	-	29.55	61.93
Random guessing													25.00	50.00

Failure Modes

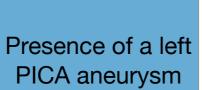
1

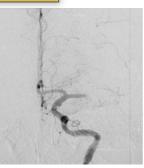
Normal/variant anatomy vs. pathology

What is the primary cause of severe spinal cord compression in

C1-C2 instability

Anterior

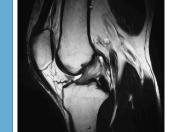



Vascular conditions

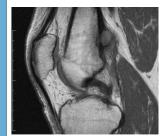
What specific vascular pathology is observed in the image?

this image?

Total occlusion of the left middle cerebral artery



2


Lesion signal characteristics

What is the signal intensity of the abnormality observed on the T2-weighted images?

High signal intensity

Low signal intensity

4

Medical devices

What is the condition of the left anterior descending artery close to the apical region? Critical narrowing with flow cessation

Successfully treated with stent implantation

Thank you for your attention!