Unhackable Temporal Hacking for Scalable Video MLLMs

En Yu, Kangheng Lin, Liang Zhao, Yana Wei, Zining Zhu, Haoran Wei, Jianjian Sun, Zheng Ge, Xiangyu Zhang, Jingyu Wang, Wenbing Tao

Part 1: Rethink Video MLLM

Key Questions

- Anti-scaling Law in Video MLLMs: Why more video-text data and larger video Ilm size lead to worse video understanding?
- Potential Risks of existing Video-Language Modeling: Will current videolanguage modeling paradigm, which primarily utilizes video-text pairs, potentially introduce risks to model optimization, such as shortcut learning?
- RL perspective: Is it possible to describe the video mllm process from the lens of reinforcement learning (RL)?

Tell me what happened in the video, and where did the blueberry go in the end?

Figure: Attention map visualization illustrates which specific frames the model's output focuses on.

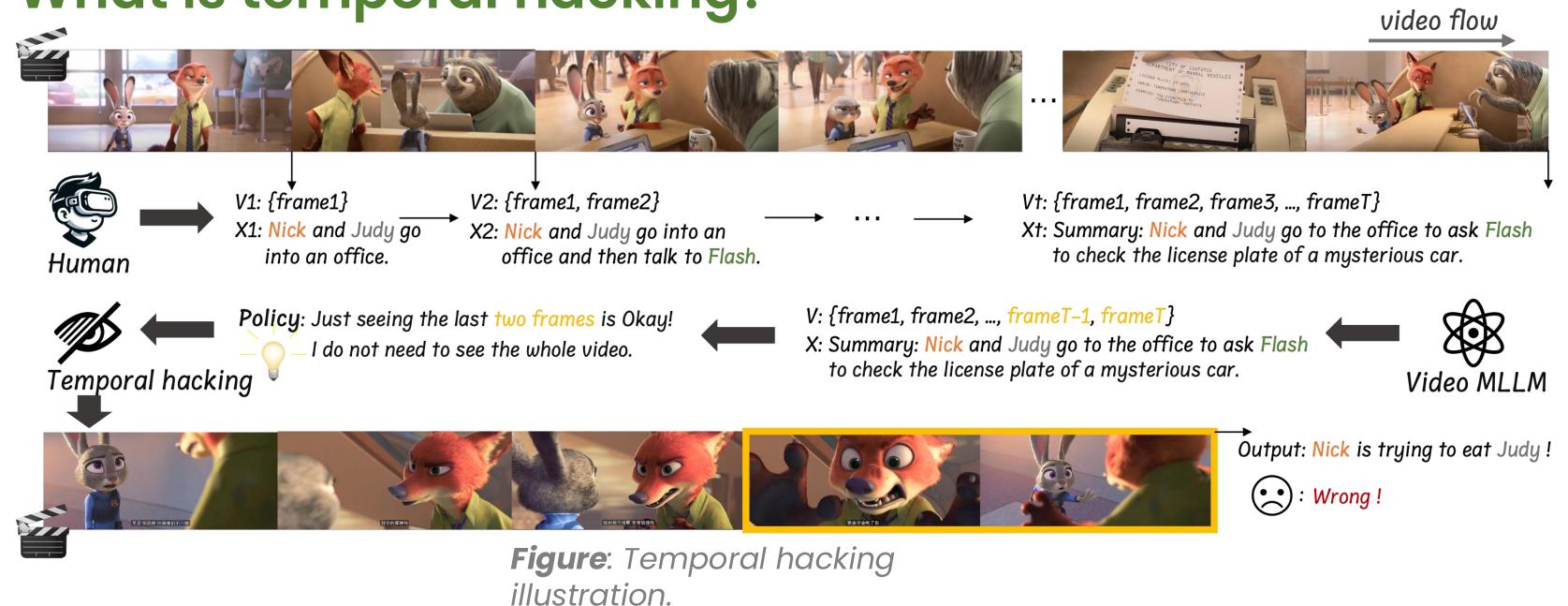
Project Page: Scan here

Postdoc seeking: Connect with me

WeChat:

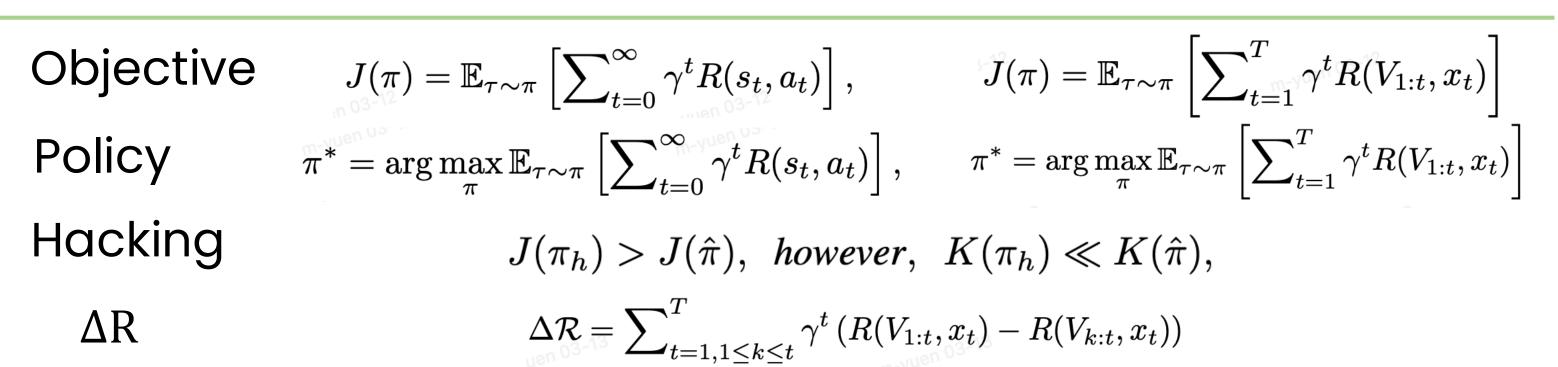
Part 2: Temporal Hacking Theory

What is temporal hacking?



Theoretical Perspective

Temporal Hacking (Ours) Reward Hacking



Key Findings

- Misalignment between video frames and text description: At current stage of video-text pair data, textual descriptions struggle to cover each individual frame.
- Frame activation number is limited: We observe that existing video mllms only attend a limited number of frames when conducting video understanding.
- Limited frame observation leads to hallucination Only easily: more observing several frames causes misunderstanding or hallucination more easily.

0.00875 0.01750 0.02625 0.03500 Temporal Perxility (TPL)

VideoChat2

What causes temporal hacking? **Experimental Perspective**

• We introduce Temporal Perplexity (TPL) Score to quantify the severity of temporal assignment. And we discover the relationship between TPL and true performance. Larger TPL indicates a reduced likelihood of reward hacking, thereby leading to superior video comprehension.

 $\mathcal{T}_{tpl} = -\left(\mathcal{R}_{ppl}(V_{1:T}, x_T) - \mathcal{R}_{ppl}(V_{T:T}, x_T)\right)$ **TPL Score**

How to Mitigate Temporal Hacking?

Two Guided Principles

- Principle I: High frame information density. The content of the video text should uniquely correspond to as many frames as possible.
- Principle II: High inter-frame information dynamics. Descriptions for different frames should be coherent and reflect temporal variations and event progression.

Overall \(\gamma\) Perception \(\gamma\) Reasoning \(\gamma\)

0.58

1.38

Part 3: Unhackable Temporal Rewarding

- Spatiotemporal attributes are key to representing unique video frame content.
- Bidirectional querying explicitly models spatiotemporal dynamics.

Video Attribution Trajectories Tracking Algorithm Attributions Expert Models Grounded-SAM SAM2 ByteTrack Kalman Filter Nick is grinning on the side, while Judy is scared. side. <box2> Judy, a rabbit, is looking ahead Querying Attribution Trajectory Track2:Judy<id2>frame1:<box1>;frame2: ...</id2>

UTR-Data Size | MVBench

325K

Part 4: Video-UTR

Experiment

Figure: UTR pipeline. UTR uses expert models to extract spatiotemporal attributes and a tracking algorithm to build trajectories based on confidence levels. It then queries temporal and spatial attributes bidirectionally to generate dialogue data, learning spatiotemporal dynamics.

1.03

1.24

Methods	LLM	Data	MVBench	TempC	VideoMME	MSVD-QA		MSRVVT-QA		TGIF-QA		ANet-QA	
TVICUIOUS		Scale		iompo	V 14401/11/12	Acc	Score	Acc	Score	Acc	Score	Acc	Scor
VideoChat (2023a)	Vicuna-7B	765K	35.5	_	_	56.3	2.8	45.0	2.5	34.4	2.3	_	2.2
VideoChat2 (2024c)	Vicuna-7B	1.9M	51.1	38.5	_	70.0	3.9	54.1	3.3	_	_	49.1	3.3
Video-ChatGPT (2023)	Vicuna-7B	765K	32.7	31.8	_	51.6	2.5	29.6	1.8	_	_	12.4	1.1
Video-LLaVA (2023)	Vicuna-7B	765K	34.1	34.8	39.9	64.9	3.3	49.3	2.8	51.4	3.0	35.2	2.7
VideoLLaMA2 (2024)	LLaMA2-7B	13.4M	54.6	_	46.6	70.9	3.8	-15	_	_	_	50.2	3.3
PLLaVA (2024)	LLaMA2-7B	1M	46.6	_	_	76.6	4.1	62.0	<u>3.5</u>	77.5	4.1	56.3	3.5
LLaVA-NeXT-Video (2024c)	Qwen2-7B	860K	54.6	_	33.7	67.8	3.5	_	_	_	_	53.5	3.2
LLaVA-OneVision(2024a)	Qwen2-7B	1.6M	<u>56.7</u>	<u>59.0*</u>	58.2	65.3*	3.8*	43.3*	3.0^{*}	52.8*	3.4*	56.6*	3.3°
Video-UTR (Ours)	Qwen2-7B	1.1M	58.8	59.7	<u>52.6</u>	<u>73.5</u>	4.1	<u>58.3</u>	3.6	<u>56.4</u>	<u>3.6</u>	55.0	3.2
Methods	LLM	MM	I-Vet MMI	Bench N	MMMU MN	1E L	LaVA ^V	V POP	E SEE	D AI2	2D Rea	alWor	ldQA
		ı											

VideoLLaMA2 (2024)	LLaMA2-7B	13.4M	54.	6 –	46.6	70.	.9 3.8	_	_	_	_	50.2	3.3
PLLaVA (2024)	LLaMA2-7B	1M	46.	6 –	_	76 .	.6 4.1	62.0	<u>3.5</u>	77.5	4.1	<u>56.3</u>	3.5
LLaVA-NeXT-Video (2024c)	Qwen2-7B	860K	54.	6 –	33.7	67.	.8 3.5	_	_	_	_	53.5	3.2
LLaVA-OneVision(2024a)	Qwen2-7B	1.6M	<u>56.</u>	<u>59.0°</u>	* 58.2	65.	3* <u>3.8*</u>	43.3*	3.0*	52.8*	3.4^{*}	56.6*	3.3*
Video-UTR (Ours)	Qwen2-7B	1.1 <i>M</i>	58.	59.7	52.6	<u>73.</u>	<u>.5</u> 4.1	<u>58.3</u>	3.6	<u>56.4</u>	<u>3.6</u>	55.0	3.2
Methods	LLM	MM	-Vet I	MMBench	MMMU	MME	LLaVA	w POPE	SEED	AI2D	Rea	alWorl	dQA
Image-level MLLM													
InstructBLIP (2024)	Vicuna-7B	33	.1	36.0	30.6	1137.1	59.8	86.1	53.4	40.6		36.9	
Qwen-VL-Chat (2023b)	Qwen-7B	47	.3	60.6	37.0	1467.8	67.7	74.9	58.2	63.0		49.3	
LLaVA-v1.5-7B (2024a)	Vicuna-7B	30	.5	64.3	35.7	1510.7	61.8	86.1	58.6	55.5		54.8	
LLaVA-v1.5-13B	Vicuna-13E	35	.4	67.7	37.0	1531.3	66.1	88.4	61.6	61.1		55.3	
ShareGPT4V (2023a)	Vicuna-7B	37	.6	68.8	37.2	<u>1567.4</u>	72.6	86.6	<u>69.7</u>	58.0		54.9	
LLaVA-NeXT-Img (2024c)	LLaMA3-8	B <u>44</u>	<u>.4</u>	<u>72.1</u>	41.7	1551.5	63.1	87.1	_	71.6		60.0	
Video-level MLLM													
LLaMA-VID (2023b)	Vicuna-7B	-	-	66.6	_	1521.4	_	86.0	59.9	_		_	
Video-LLaVA (2023)	Vicuna-7B	32	.0	60.9	_	_	<u>73.1</u>	84.4	_	_		_	
LLaVA-NeXT-Video (2024c	e) QWen2-7B	42	.9	74.5	<u>42.6</u>	1580.1	75.9	<u>88.7</u>	74.6	<u>71.9</u>		<u>60.1</u>	
Video-UTR (Ours)	Qwen2-7B	39	.603-1	³ 76.6	43.4	1583.6	69.4	3-88.9	74.7	72.1		63.7	yuen
Ablation Setting	Data Sca	ale 1	MVB	ench T	GIF-QA	AN	et-QA	MMY	Vet I	MMB	ench	PC	PE
		<u> </u>						1					

Ablation Setting	Data Scale	MVBench	TGIF-QA	ANet-QA	MMVet	MMBench	POPE
Video-UTR	1.1M	58.78	56.44	55.00	39.59	76.63	88.86
- Task Modeling	1.0 M	58.45	56.11	54.21	37.33	76.37	89.29
- Data Modeling	780K	54.63	54.74	54.15	42.20	75.77	89.13
+ More VideoChat2	1.1 M	57.65	53.39	53.65	36.56	75.95	88.76

TPL Score: 0.5056167

Methods

Claude-3.5-Sonnet (2024)

VideoChat2-HD (2024c)

PLLaVA-34B (2024) LLaVA-NeXT-Video-34B-HF (2024c)

Video-UTR-7B (Ours)

1.13

1.35

. . . Caption: "Happy female and mother shopping online, watching photos on laptop together"

Table: Scalability ablation study of UTR.

52.63

VideoMME

Demo case

Model output: **D**

TempCompass

59.67

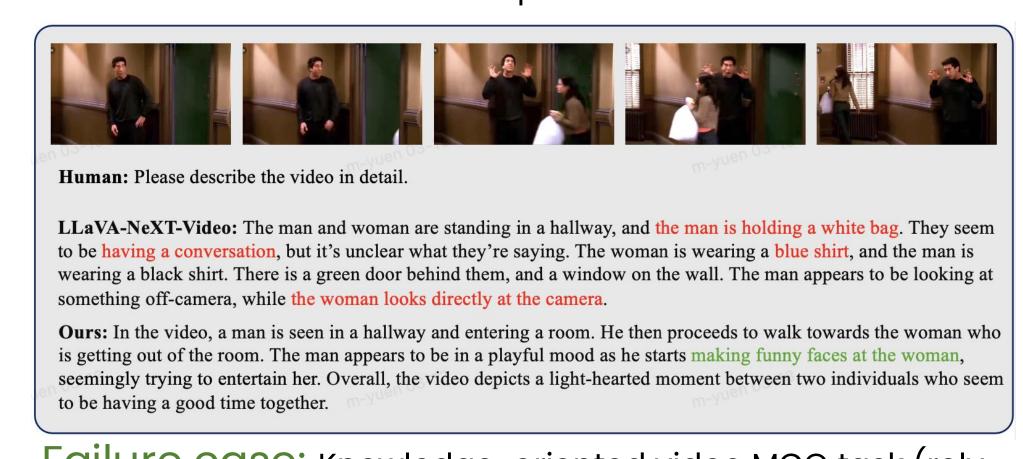
Successful case: More important details about movie.

50.08

51.40

56.11

52.07



Failure case: Knowledge-oriented video MCQ task (rely on better LLM).

