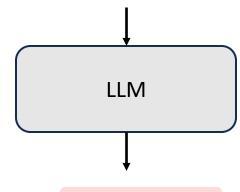


Implicit In-context Learning

Presenter: Zhuowei Li

Authors: Zhuowei Li, Zihao Xu, Ligong Han, Yunhe Gao, Song Wen, Di Liu, Hao Wang, Dimitris N. Metaxas


Institute: Rutgers University

In-context Learning (ICL) is great!

Zero-shot

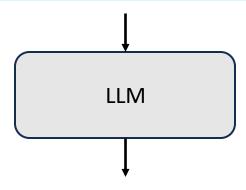
Text: The film is strictly routine.

Ans: Positive (x)

- Query
- Demonstration examples

ICL (few-shot)

Text: lurid and less than lucid work.


Ans: Negative

Text: lurid and less than lucid work.

Ans: Positive

. . .

Text: The film is strictly routine.

Ans: Negative $(\sqrt{\ })$

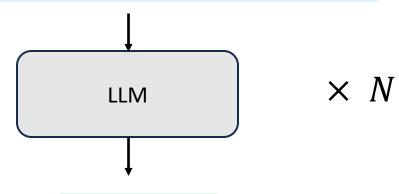
Yet EXPENSSIVE (to some extent)!

Inference N queries

OR

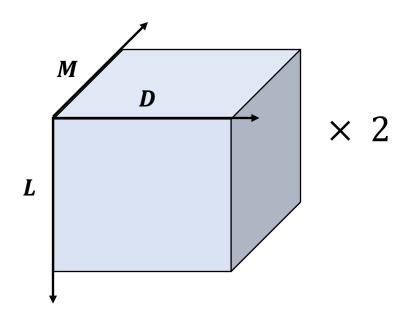
Repetitively Forward: forward demonstrations N times

Text: lurid and less than lucid work.


Ans: Negative

Text: lurid and less than lucid work.

Ans: Positive


• • •

Text: The film is strictly routine.

Ans: Negative $(\sqrt{\ })$

KV Cache: caching $2 \times M \times D \times L$ activations

M: # of demonstration tokens

D: hidden dimension

L: # of layers

Implicit In-context Learning (I2CL) as an alternative!

Step-1: Collect demonstration vector for each example independently and average them to construct context vector.

Step-2: At inference time, linearly combine context vector with output activation and re-inject them into residual streams.

Effect: Reducing the caching memory and inference speed of ICL to zero-shot level with minimum performance loss

Estimate linear coefficients via noisy self-calibration.

Noisy Self-calibration

- Initialize a set of linear coefficients.
- 2. Update them via minimizing the perplexity of answer tokens using the same demonstration examples (no external data).
- 3. Add random noises during the calibration.
- 4. Done!

Mini QA

Q: Since there is a "training" (i.e., self-calibration) procedure, why I2CL is cheaper than ICL at all?

Ans: (1) self-calibration is extremely light-weight, only updating a dozen of coefficients. (2) Critically, linear coefficients are "task-id" that need estimation only once per task, and can be applied to different demonstration examples.

12CL achieves few-shot performance with zero-shot inference cost!

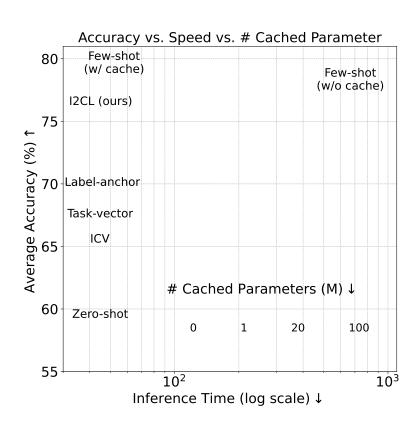


Table 1: Comparison between I2CL and baseline methods on Llama2-7b. The **best** results are highlighted in bold, and the <u>second-best</u> results are underlined. In addition to a practical gauge of the inference speed and memory usage (see Fig $\boxed{1}$), we include an examination of cached parameters Here, M, D, and L denote the number of demonstration tokens, model dimension, and architecture layers, respectively. P indicates the number of extra learnable tokens in the Soft-prompt method, and 1/K represents the compression rate of corresponding context-compression method.

Method	SST-2 (%) ↑	SST-5 (%) ↑	TREC (%) ↑	AGNews (%)↑	Subj (%) ↑	HateSpeech18 (%) ↑	DBPedia (%)↑	EmoC (%)↑	MR (%) ↑	Avg. acc. (%)↑	# cached param. ↓
Zero-shot Few-shot (ICL)	83.00 94.44±1.44	$27.00 \\ 41.72 \pm 3.68$	$50.00\atop77.32{\scriptstyle\pm4.41}$	$70.20 \\ 85.68 {\pm} 2.00$	$51.40 \\ 52.56 \pm 3.09$	$54.20 \\ 70.24 \pm 5.80$	$72.00 \\ 96.64 {\pm} 0.48$	$41.80 \\ 75.48 {\pm} 1.63$	$\begin{array}{c} 73.60 \\ 93.24 \pm 0.50 \end{array}$	58.13 76.37	$0\\2MDL$
Noise vector Label-anchor Task-vector ICV I2CL (ours)	$\begin{array}{c c} 49.88 \pm 0.24 \\ 83.32 \pm 5.95 \\ 81.44 \pm 4.73 \\ \underline{86.28} \pm 0.55 \\ \textbf{87.68} \pm 2.47 \end{array}$	$\begin{array}{c} 20.56{\pm}0.64 \\ 27.68{\pm}4.21 \\ 25.96{\pm}0.59 \\ \underline{33.48}{\pm}0.65 \\ 39.12{\pm}2.69 \end{array}$	$\begin{array}{c} 20.12{\pm}10.92\\ \underline{77.48}{\pm}3.49\\ 65.68{\pm}1.93\\ 63.84{\pm}0.15\\ 78.56{\pm}5.32\\ \end{array}$	$\begin{array}{c} 27.32{\pm}2.82\\ \underline{83.72}{\pm}1.04\\ 79.68{\pm}4.07\\ 72.40{\pm}0.37\\ \textbf{85.48}{\pm}1.16\\ \end{array}$	$49.64{\pm}0.48\\53.00{\pm}2.95\\\underline{58.56}{\pm}4.91\\\underline{56.56}{\pm}0.70\\73.84{\pm}3.84$	$\begin{array}{c} 59.84{\pm}8.04 \\ 64.52{\pm}8.09 \\ \underline{67.68}{\pm}3.70 \\ 60.56{\pm}1.50 \\ \textbf{69.88}{\pm}5.67 \end{array}$	$\begin{array}{c} 7.28{\pm}0.37 \\ 81.40{\pm}3.67 \\ \underline{89.48}{\pm}2.58 \\ \overline{73.64}{\pm}0.88 \\ 90.16{\pm}1.86 \end{array}$	$\begin{array}{c} 26.76{\pm}3.04\\ \underline{59.12}{\pm}10.60\\ 44.64{\pm}3.53\\ 49.16{\pm}1.24\\ 63.72{\pm}1.37 \end{array}$	$\begin{array}{c} 50.12{\pm}0.24\\ \underline{84.40}{\pm}5.89\\ 82.32{\pm}5.37\\ 84.04{\pm}1.10\\ \textbf{87.68}{\pm}2.26\\ \end{array}$	34.61 68.29 66.16 64.44 75.12	$2DL \\ 2(M/K)DL \\ D \\ DL \\ 2DL$
AutoComp. ICAE CEPE	92.44±3.29 91.64±1.69 74.28±3.9	$25.8{\pm}4.8 \ 38.8{\pm}1.56 \ 36.2{\pm}0.56$	$62.52\pm 9.34 \ 50.92\pm 8.38 \ 55.48\pm 3.42$	$86.36\pm 1.03 \ 80.48\pm 2.35 \ 78.00\pm 3.49$	$\begin{array}{c} 60.16{\pm}0.32\\ 50.52{\pm}9.17\\ 59.12{\pm}1.6\end{array}$	$\begin{array}{c} 53.2{\pm}6.1 \\ 65.48{\pm}7.18 \\ 61.72{\pm}5.26 \end{array}$	$92.68{\scriptstyle\pm2.86\atop62.08{\scriptstyle\pm1.86\atop87.24{\scriptstyle\pm1.2}}}$	$\begin{array}{c} 29.56{\scriptstyle \pm 5.07} \\ 54.04{\scriptstyle \pm 4.69} \\ 42.28{\scriptstyle \pm 3.31} \end{array}$	82.76±7.34 89.48±1.45 82.36±1.61	63.94 64.83 64.08	$\begin{array}{c} 2(M/K)DL \\ 2(M/K)DL \\ 2(M/K)DL \end{array}$

Table 2: Comparison between different PEFT-based few-shot fine-tuning strategies.

Method	# trainable params. (K) \	SST-2 (%) ↑	SST-5 (%) ↑	TREC (%) ↑	AGNews (%) ↑	Subj (%)↑	HateSpeech18 (%) ↑	DBPedia (%)↑	EmoC (%) ↑	MR (%) ↑	Avg. acc. (%) ↑
Prompt-tuning	4.10	56.24±6.99	24.24 ± 2.96	55.20 ± 4.14	78.00 ± 7.60	57.40 ± 4.93	49.56 ± 6.96	$74.40{\pm}6.43$	35.08 ± 5.29	54.32 ± 1.76	54.94
LoRA	4194.30	84.80±6.59	39.87 ± 4.33	75.97 ± 10.77	83.80 ± 2.32	70.47 ± 10.68	75.32 ± 2.88	91.40 ± 3.54	53.67 ± 16.27	83.07 ± 0.25	73.15
IA3	262.14	89.40 ±2.08	46.93 \pm 0.81	75.41 ± 4.94	84.43 ± 1.45	56.67 ± 3.07	$62.54{\pm}$ 5.58	93.91 ±0.49	59.75 ± 3.67	88.00 ± 1.88	73.00
I2CL (ours)	0.13	87.68±2.47	39.12 ± 2.69	78.56 ±5.32	85.48 ±1.16	73.84 ±3.84	69.88 ± 5.67	$90.16{\scriptstyle\pm1.86}$	63.72 ±1.37	$87.68{\scriptstyle\pm2.26}$	75.12

I2CL has good scaling property and linear coefficients can generalize to unseen indomain demonstrations.

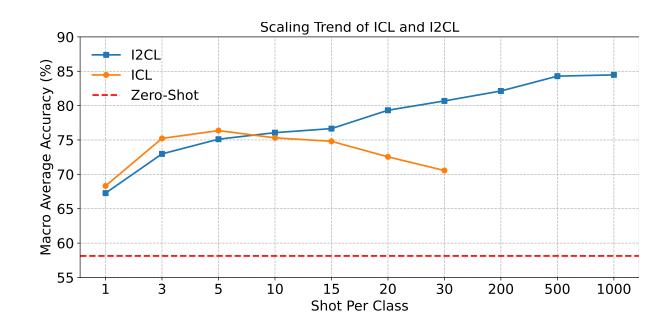


Table 14: Evaluation of zero-shot, few-shot and I2CL on the synthetic dataset.

Task	Zero-shot	Few-shot (ICL)	I2CL	I2CL (unseen demo.)
Synthetic data	32.6	$66.20{\scriptstyle\pm0.73}$	86.48 ±4.51	86.36 ± 5.40

Limitations

- 1. We evaluate I2CL on standard classification tasks, more complicated task may need additional consideration and more complicated technical design, e.g., how to extract context vectors and how to estimate the coefficients.
- 2. I2CL needs access to intermediate activations, which is not directly applicable to black-box commercial models.
- 3. We test on several small to modest-sized LLMs, further scaling LLM to very large size may vary the observation.

Thanks for listening!

Chek out the paper here: https://openreview.net/pdf?id=G7u4ue6ncT

Code is available at: https://github.com/LzVv123456/I2CL

Presentation link: https://recorder-v3.slideslive.com/#/share?share=98355&s=8ac7f48a-dba1-4aa7-9630-9f3ce896f0c9