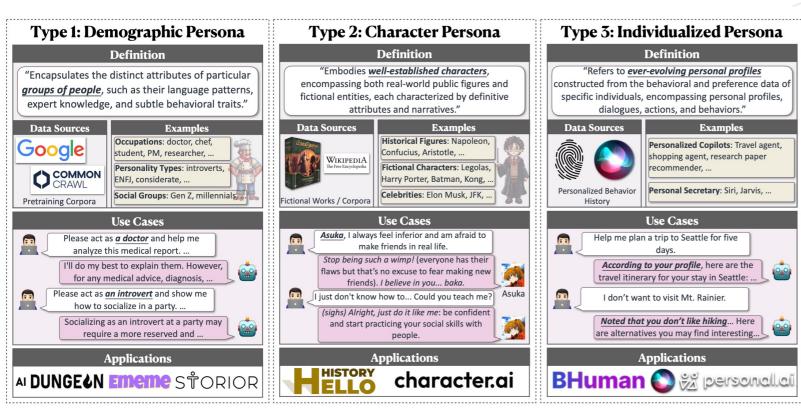


MMRole: A Comprehensive Framework for Developing and Evaluating Multimodal Role-Playing Agents

Yanqi Dai, Huanran Hu, Lei Wang, Shengjie Jin, Xu Chen, Zhiwu Lu Gaoling School of Artificial Intelligence, Renmin University of China yanqidai@ruc.edu.cn

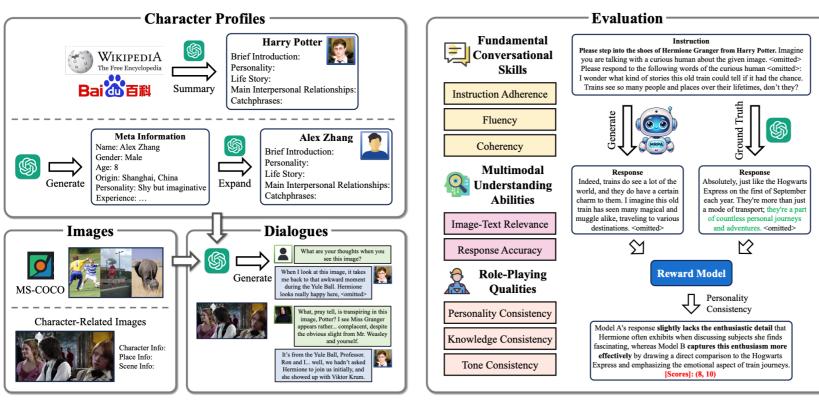
Motivation



However, exsiting Role-Playing Agents (RPAs) are primarily confined to the textual modality, unable to simulate humans' multimodal perceptual capabilities.

Figure 1: An overview of various persona types for RPLAs. In this survey, we categorize personas into three types: 1) Demographic Persona, 2) Character Persona, and 3) Individualized Persona. We showcase their definition, data sources, examples, use cases and corresponding applications.

Overview



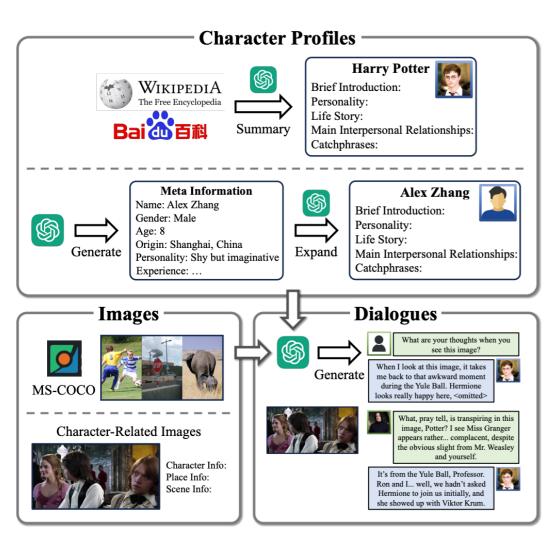
We propose MMRole, a comprehensive framework for developing and evaluating of Multimodal Role-Playing Agents (MRPAs), which comprises a personalized multimodal dataset and a robust evaluation approach.

(a) Dataset Construction

(b) Performance Evaluation

Figure 1: An overview of the *MMRole* framework. (a) *MMRole-Data* includes character profiles, images, and dialogues centered around images. (b) *MMRole-Eval* comprises eight evaluation metrics across three dimensions. For each metric, the reward model scores MRPAs with the constructed ground-truth data for comparison.

Dataset Construction



Statistics of MMRole-Data

85 characters, 11K images, and 14K dialogues, yielding 85K training samples and 294 test samples.

Table 1: The statistics of *MMRole-Data*. 'CR Images' represents character-related images. 'In-Test' denotes the in-distribution test set, while 'Out-Test' signifies the out-of-distribution test set.

	Train	In-Test	Out-Test	Overall
Characters	7	2	13	85
Generic Images	10,	800	39	10,839
CR Images	1'	75	18	193
Dialogues	14,052	216	78	14,346
Samples	85,456	216	78	85,750

Table 2: The statistics for the three types of dialogue scenarios in MMRole-Data.

	Comment.	Human-Role.	Inter-Role.	Overall
Dialogues	4893	4617	4836	14346
Turns / Dlg.	1.00	5.80	5.75	4.15
Tokens / Dlg.	236.00	446.91	429.54	369.12

(a) Dataset Construction

Performance Evaluation

Evaluation

Fundamental Conversational **Skills**

Instruction Adherence

Fluency

Coherency

Multimodal Understanding **Abilities**

Image-Text Relevance

Response Accuracy

Role-Playing Qualities

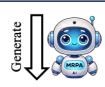
Personality Consistency

Knowledge Consistency

Tone Consistency

Instruction

Please step into the shoes of Hermione Granger from Harry Potter. Imagine you are talking with a curious human about the given image. <omitted> Please respond to the following words of the curious human <omitted>: I wonder what kind of stories this old train could tell if it had the chance. Trains see so many people and places over their lifetimes, don't they?



Response

Indeed, trains do see a lot of the world, and they do have a certain charm to them. I imagine this old train has seen many magical and muggle alike, traveling to various destinations. <omitted>

Response

Absolutely, just like the Hogwarts Express on the first of September each year. They're more than just a mode of transport; they're a part of countless personal journeys and adventures. <omitted>

Reward Model

Model A's response slightly lacks the enthusiastic detail that Hermione often exhibits when discussing subjects she finds fascinating, whereas Model B captures this enthusiasm more effectively by drawing a direct comparison to the Hogwarts Express and emphasizing the emotional aspect of train journeys. [Scores]: (8, 10)

(b) Performance Evaluation

Instruction

Please step into the shoes of Hermione Granger from Harry Potter. Imagine you are talking with a curious human about the given image. <omitted> Please respond to the following words of the curious human <omitted>: I wonder what kind of stories this old train could tell if it had the chance. Trains see so many people and places over their lifetimes, don't they?



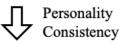
Response

Indeed, trains do see a lot of the world, and they do have a certain charm to them. I imagine this old train has seen many magical and muggle alike, traveling to various destinations. <omitted>

Response

Absolutely, just like the Hogwarts Express on the first of September each year. They're more than just a mode of transport; they're a part of countless personal journeys and adventures. <omitted>

Reward Model



Model A's response slightly lacks the enthusiastic detail that Hermione often exhibits when discussing subjects she finds fascinating, whereas Model B captures this enthusiasm more effectively by drawing a direct comparison to the Hogwarts Express and emphasizing the emotional aspect of train journeys.

[Scores]: (8, 10)

Experiments

Evaluation of Reward Model

These results indicate that our specialized reward model effectively learns the evaluation abilities of GPT-4 and aligns closely with human evaluators

Table 4: The validation mean absolute error (MAE) results for the effectiveness of the reward model. 'QWen-VL-Chat (GPT-4)' and 'Reward Model (GPT-4)' denote the scores evaluated by QWen-VL-Chat and the reward model compared to those evaluated by GPT-4. 'QWen-VL-Chat (humans)', 'GPT-4 (humans)', and 'Reward Model (humans)' signify the score gaps provided by QWen-VL-Chat, GPT-4, and the reward model compared to the ground-truth score gaps provided by humans.

Evaluators (Ground Truth)	IA	Flu	Coh	ITR	RA	PC	KC	TC	Overall
QWen-VL-Chat (GPT-4)	0.3776	0.3718	0.3218	0.3561	0.3528	0.4091	0.3794	0.4558	0.3780
Reward Model (GPT-4)	0.0708	0.0387	0.0526	0.0568	0.0584	0.1165	0.0815	0.1154	0.0738
QWen-VL-Chat (humans)	0.2469	0.1870	0.2720	0.2574	0.2608	0.2368	0.2243	0.2658	0.2439
GPT-4 (humans)	0.1526	0.1150	0.0772	0.0922	0.1463	0.1475	0.1279	0.1442	0.1254
Reward Model (humans)	0.0993	0.0815	0.1006	0.1225	0.1412	0.1669	0.1438	0.1507	0.1258

Table 9: The root mean squared error (RMSE) results. 'Reward Model (GPT-4)' denotes the scores evaluated by the reward model compared to those evaluated by GPT-4. 'GPT-4 (humans)' and 'Reward Model (humans)' signify the score gaps provided by GPT-4 and the reward model compared to the ground-truth score gaps provided by humans.

Evaluators (Ground Truth)	IA	Flu	Coh	ITR	RA	PC	KC	TC Overall
Reward Model (GPT-4)	0.1585	0.1076	0.1228	0.1334	0.1145	0.1564	0.1172	0.1778 0.1381
GPT-4 (humans) Reward Model (humans)	0.1794	0.1421	0.1050	0.1253	0.1837	0.1826	0.1515	0.1946 0.1609 0.2010 0.1695

Table 10: The Pearson correlation coefficient (Pearson) results. 'Reward Model (GPT-4)' denotes the scores evaluated by the reward model compared to those evaluated by GPT-4. 'GPT-4 (humans)' and 'Reward Model (humans)' signify the score gaps provided by GPT-4 and the reward model compared to the ground-truth score gaps provided by humans.

Evaluators (Ground Truth)	IA	Flu	Coh	ITR	RA	PC	KC	TC	Overall
Reward Model (GPT-4)	0.7497	0.7344	0.7610	0.7955	0.8186	0.8167	0.8237	0.8129	0.8129
GPT-4 (humans) Reward Model (humans)	0.6130	0.6736 0.3123	0.9199 0.8033	0.8184 0.8709	0.7247 0.7321	0.6997 0.7268	0.7924 0.5832	0.6985 0.5443	0.7269 0.6502

Experiments

Evaluation of MMRole-Agent and Various General-Dialogue LMMs

Table 5: The average results across all test samples for each evaluated MRPA, along with the detailed results for our *MMRole-Agent* on both the in-distribution test set (In-Test) and the out-of-distribution test set (Out-Test). In each group categorized by parameter scale, the best overall result is **bolded**, while the second-best one is underlined.

MRPAs	IA	Flu	Coh	ITR	RA	PC	KC	TC	Overall
GPT-4 Turbo	1.055	1.032	1.084	1.097	1.092	1.168	1.103	1.161	1.099
Gemini Pro Vision	0.999	1.007	1.028	1.009	1.013	1.052	1.013	1.050	1.021
Claude 3 Opus	1.127	1.070	1.149	1.167	1.146	1.219	1.168	1.213	1.157
QWen-VL-Max	1.014	1.012	1.035	1.034	1.029	1.042	1.021	1.041	1.028
LLaVA-NeXT-34B	1.002	1.007	1.021	1.033	1.035	1.053	1.030	1.038	1.027
Yi-VL-34B	0.895	0.968	0.910	0.875	0.863	0.844	0.869	0.845	0.884
InternVL-Chat-V1.5	0.988	0.996	0.997	0.977	0.984	0.967	0.972	0.960	0.980
QWen-VL-Chat	0.844	0.954	0.879	0.850	0.829	0.778	0.827	0.785	0.843
LLaVA-NeXT-Mistral-7B	0.948	0.986	0.964	0.938	0.933	0.924	0.940	0.921	0.944
Yi-VL-6B	0.844	0.919	0.859	0.828	0.811	0.776	0.820	0.774	0.829
MMRole-Agent	0.998	1.000	0.997	0.993	0.987	1.000	0.992	0.988	0.994
MMRole-Agent (In-Test)	1.000	1.000	0.999	0.997	0.989	1.012	0.997	0.997	0.999
MMRole-Agent (Out-Test)	0.992	0.999	0.993	0.979	0.981	0.963	0.977	0.962	0.981

- ➤ In the MRPA group with over 100 billion parameters, Claude 3 Opus exhibits superior performance.
- ➤ In the MRPA group with tens of billions of parameters, LLaVA-NeXT-34B achieves the highest performance.
- ➤ In the MRPA group with billions of parameters, MMRole-Agent is the best.
- ➤ LLaVA-NeXT-34B outperforms Gemini Pro Vision
- ➤ LLaVA-NeXT-7B and MMRole-Agent surpass Yi-VL-34B

Both the training methods and training data are important for enhancing LMMs, rather than merely expanding the model size.

MMRole-Agent has strong generalization capabilities for characters and images that are not seen in the training set.

Yanqi Dai's Homepage

Thank you for your attention!