

Efficient and Robust Neural Combinatorial Optimization via Wasserstein-based Coresets

Authors: Xu Wang, Fuyou Miao, Wenjie Liu, Yan Xiong

Affiliations: School of Computer Science and Technology, University of Science and Technology of China

Conference: ICLR 2025

Outline

- Research Background & Motivation
- Challenges for NCO
- Overview of the Proposed Method
 - RWD & Coreset Construction
 - □ Accelerate Coreset Construction with Merge-and-Reduce
 - Efficient Framework for NCO methods
- Experimental Results
- □ Conclusion & Future Work

Research Background & Motivation

■ Combinatorial Optimization (CO) is crucial in fields like transportation[1], logistics[2], and manufacturing[3].

^[1] MacZ. Transportation - 575184[EB/OL]. [2025-02-21]. Available: https://sc.macz.com/pic/575184.html.

^[2] Thailand Translation. Logistics Image [EB/OL]. (2017-10) [2025-02-21]. Available: https://thailandtranslation.net/wp-content/uploads/2017/10/logistic-1.jpg.

^[3] Yingluo. Advances in Combinatorial Optimization Applications[EB/OL]. Plasway, 2025-02-21[2025-02-21]. Available at: https://yingluo.plasway.com/news/120277.html.

Research Background & Motivation

□ Traditional exact and heuristic solvers have limitations in scalability and adaptability.

■ Neural Combinatorial Optimization (NCO) methods offer a data-driven alternative but demand high computational resources.

■ An important issue for NCO is the reduced robustness when the training and test data distributions differ.

Challenges for NCO

- **High storage and computational costs** due to large-scale training datasets.
- NCO models often struggle with robustness when facing **distribution shifts** between training and testing.
- The need for an efficient training strategy that maintains performance while using limited resources.

Overview of the Proposed Method

- RWD and Coreset Construction
- Accelerate Coreset Construction with Merge-and-Reduce
- Efficient Framework for NCO methods

RWD and Coreset Construction

■ RWD: Definition and its invariance to rigid transformations.

Definition 1 (Wasserstein distance under rigid transformations, RWD)

Let $\mu = \sum_{i=1}^n a_i \delta_{x_i}$, $\nu = \sum_{j=1}^n b_j \delta_{y_j} \in \mathcal{P}(\mathbb{R}^d)$, where $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n_+$ are their weight vectors and $\{x_i\}_{\{i \in [n]\}}$, $\{y_j\}_{\{j \in [n]\}} \subset \mathbb{R}^d$ are their locations. Then, the value of RWD between μ and ν is

$$\mathcal{W}(\mu, \nu) \coloneqq \left(\min_{\mathbf{P} \in \Pi(\mathbf{a}, \mathbf{b}), e \in E(d)} \sum_{i=1}^{n} \sum_{j=1}^{n} P_{ij} \parallel x_i - e(y_j) \parallel^2 \right)^{1/2},$$

Where $\Pi(\mathbf{a}, \mathbf{b}) := \{ \mathbf{P} \in \mathbb{R}_+^{n \times n} \mid \mathbf{P}\mathbf{1} = \mathbf{a}, \mathbf{P}^T\mathbf{1} = \mathbf{b} \}$ is the coupling set, E(d) is the Euclidean group on \mathbb{R}^d , and $e: \mathbb{R}^d \to \mathbb{R}^d$ is the rigid transformation.

Intuitions: The solutions to CO problems such as TSP remain invariant under rigid transformations such as translation, rotation, and reflection.

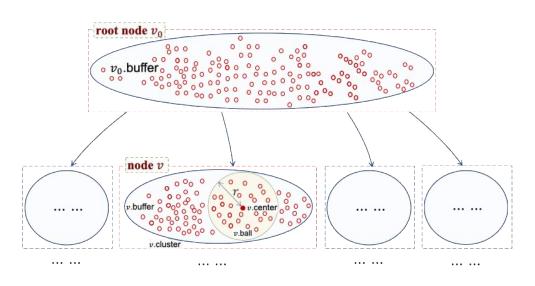
Alternative metrics: Wasserstein distance, Gromov-Wasserstein distance, ...

RWD and Coreset Construction

■ What is coreset?

- A small-size weighted proxy of the original dataset.
- □ Preserves the value of an objective function evaluated on the full dataset.
- Saves computational and storage resources.

Definition 2 (Coreset)


Let $0 < \epsilon < 1$ and ℓ be a loss function. Let $\mathcal{Q} \subset \mathcal{P}(\mathbb{R}^d)$ be a set of measures with weight function $W_{\mathcal{Q}} \colon \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}_+$. Let $\sum_{\mu \in \mathcal{Q}} W_{\mathcal{Q}}(\mu) = 1$. Then, a weighted set \mathcal{S} with weight function $W_{\mathcal{S}}$ is an ϵ -coreset of \mathcal{Q} if

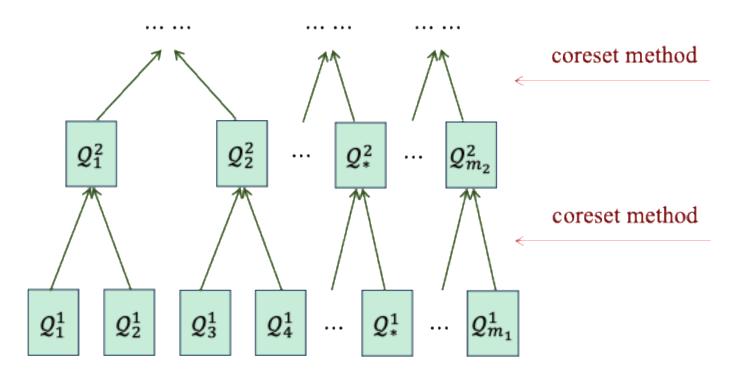
$$\ell(S, \theta) \in (1 \pm \epsilon) \cdot \ell(Q, \theta)$$
 for all $\theta \in \Theta$.

RWD and Coreset Construction

■ Based RWD, design a coreset method.

Algorithm 1 Algorithm for constructing coresets

Input: a set $\mathcal{Q} := \{\mu_i\}_{i \in [N]} \subset \mathcal{P}(\mathbb{R}^d)$ of measures, doubling dimension ddim of \mathcal{Q} , radius r

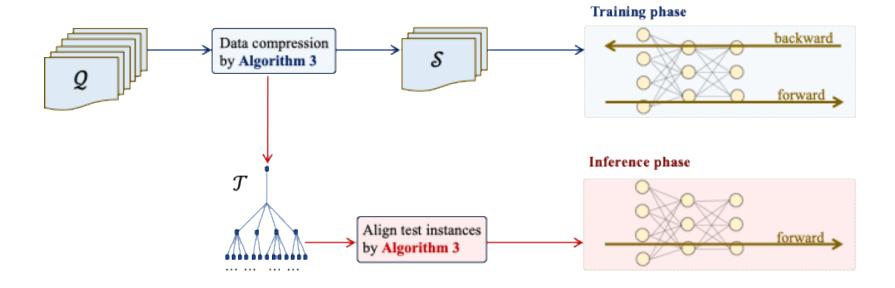

- 1: Initialize an empty tree \mathcal{T} , and set its root node as v_0 ;
- 2: Set v_0 .buffer = Q;
 - \triangleright The root node v_0 only has an attribute buffer, and it is not associated with any node.
- 3: Construct the nodes of \mathcal{T} recursively as follows: $\triangleright v$ is the current node.
- 4: **if** v.buffer is \emptyset **then**
- 5: The current node v is a leaf node, and we stop adding children to it;
- 6: else
- 7: Set $k = \min\{|v.\mathsf{buffer}|, 2^{2\cdot\mathsf{ddim}}\}$ and add k children node $\{v_j'\}_{j\in[k]}$ to the current node v;
- Run Gonzalez's algorithm k rounds on v.buffer. For each children node v'_j , we set its attributions cluster, center, ball, buffer according to Equation (3) and Equation (4);
- 9: **end if**
- 10: Set $S = \{v.\text{center} \mid v \text{ is a node of } T\}$ and set the weight as $w_S(\mu) = |v.\text{ball}|$;

Output: \mathcal{T}, \mathcal{S}

- Theoretical guarantee: Under a Lipschitz continuous loss function, the coreset approximates the full dataset's objective within a $(1 \pm \epsilon)$ factor.
- □ The resulting tree structure is retained for later use in the inference phase.

Accelerate Coreset Construction with Merge-and-Reduce

■ Introduce the merge-and-reduce framework: partition the data into blocks and process them in parallel.


□ This approach reduces the time complexity of coreset construction and supports streaming data scenarios.

Efficient Framework for NCO methods

 \blacksquare Training Phase: Replace the full dataset with the small-size coreset S, saving computational and storage resources.

Inference Phase: Align test instances with the coreset using the pre-constructed tree \mathcal{T} to quickly find the closest representative.

Experimental Results (TSP)

- Datasets: TSP100 (2D & 3D instances), TSPLIB, etc.
 - Metrics: Tour length and runtime.
- Comparisons: The coreset method outperforms uniform sampling, particularly under distribution shifts.

- □ Results:
 - □ Comparable performance with reduced sample sizes.
 - Robustness to distribution shifts.
 - Better generalization to larger problem sizes (e.g., TSP200, TSP500, TSP1000).

Experimental Results (TSP-2D)

Table 1: Comparison of uniform sampling and our coreset method using TSP100-2D- $\mathcal{N}(0,1)$ as the training dataset on test data TSP100-2D from different distributions.

Sample size	Method	Test distribution	Gree	edy	Greedy-	Greedy+2-opt		
			Length (\downarrow)	Time (\downarrow)	Length (↓)	Time (↓)		
		$\mathcal{N}(0,1)$	20.39	386	18.61	384		
128000	Org	$\mathcal{N}(0,4)$	76.41	374	67.39	388		
		U(0, 10)	89.29	372	79.82	385		
		$\mathcal{N}(0,1)$	22.34	378	18.92	387		
	US	$\mathcal{N}(0,4)$	101.95	379	69.28	395		
		$\mathcal{U}(0,10)$	119.78	380	82.59	395		
		$\mathcal{N}(0,1)$	22.21	372	18.87	379		
4003	CS	$\mathcal{N}(0,4)$	80.63	372	67.92	379		
		$\mathcal{U}(0,10)$	94.73	373	80.64	377		
		$\mathcal{N}(0,1)$	22.18	359	18.88	363		
	CS-aligned	$\mathcal{N}(0,4)$	80.66	362	67.91	358		
	8	$\mathcal{U}(0,10)$	94.94	361	80.53	360		
	US	$\mathcal{N}(0,1)$	22.12	377	18.87	388		
		$\mathcal{N}(0,4)$	83.17	377	68.13	378		
		$\mathcal{U}(0,10)$	97.31	377	80.80	387		
	CS	$\mathcal{N}(0,1)$	21.79	366	18.84	383		
8245		$\mathcal{N}(0,4)$	78.72	372	67.79	378		
		$\mathcal{U}(0,10)$	92.99	374	80.35	377		
		$\mathcal{N}(0,1)$	21.80	360	18.86	359		
	CS-aligned	$\mathcal{N}(0,4)$	78.50	361	67.82	358		
		$\mathcal{U}(0,10)$	93.04	355	80.42	361		
		$\mathcal{N}(0,1)$	21.99	390	18.87	377		
12951	US	$\mathcal{N}(0,4)$	80.78	384	67.94	379		
		$\mathcal{U}(0,10)$	95.01	369	80.60	379		
	CS	$\mathcal{N}(0,1)$	21.57	372	18.81	382		
		$\mathcal{N}(0,4)$	77.80	369	67.58	379		
		$\mathcal{U}(0,10)$	92.01	378	80.23	375		
	CS-aligned	$\mathcal{N}(0,1)$	21.50	361	18.79	358		
		$\mathcal{N}(0,4)$	77.67	362	67.57	357		
		$\mathcal{U}(0,10)$	92.01	358	80.21	359		

Table 2: Comparison of uniform sampling and our coreset method using TSP100-2D- $\mathcal{N}(0,1)$ as the training dataset on test data of varying sizes. We fix the sample size as 12951.

TSP size	Method	Test distribution	Greedy		Greedy+2-opt	
Tor size			Length (\downarrow)	Time (\downarrow)	Length (\downarrow)	Time (\downarrow)
	US	$\mathcal{N}(0,1)$	33.69	109	27.14	112
		$\mathcal{N}(0,4)$	125.99	108	96.70	112
		$\mathcal{U}(0,10)$	145.41	109	113.39	112
		$\mathcal{N}(0,1)$	30.75	107	26.69	110
TSP200	CS	$\mathcal{N}(0,4)$	110.48	109	94.84	111
		$\mathcal{U}(0,10)$	129.77	107	111.47	109
		$\mathcal{N}(0,1)$	30.77	77	26.68	79
	CS-aligned	$\mathcal{N}(0,4)$	110.99	78	94.59	79
		$\mathcal{U}(0,10)$	129.28	76	111.49	78
		$\mathcal{N}(0,1)$	59.81	1012	43.41	1020
	US	$\mathcal{N}(0,4)$	237.72	1012	154.28	1022
		$\mathcal{U}(0,10)$	263.66	1015	180.75	1022
		$\mathcal{N}(0,1)$	49.11	1012	42.25	1016
TSP500	CS	$\mathcal{N}(0,4)$	178.56	1010	149.50	1016
		$\mathcal{U}(0,10)$	208.36	1011	174.93	1016
	CS-aligned	$\mathcal{N}(0,1)$	49.38	680	42.26	683
		$\mathcal{N}(0,4)$	178.88	679	149.63	682
		$\mathcal{U}(0,10)$	208.77	678	175.03	682
	US	$\mathcal{N}(0,1)$	94.71	2823	61.72	2848
		$\mathcal{N}(0,4)$	382.77	4224	219.16	2847
TSP1000		$\mathcal{U}(0,10)$	426.61	4215	255.95	4254
		$\mathcal{N}(0,1)$	69.76	2823	59.59	2833
	CS	$\mathcal{N}(0,4)$	252.92	4224	210.71	2832
		$\mathcal{U}(0,10)$	299.80	4215	246.57	4234
	CS-aligned	$\mathcal{N}(0,1)$	69.96	2825	59.57	2832
		$\mathcal{N}(0,4)$	253.63	2821	210.81	2830
		$\mathcal{U}(0,10)$	300.03	2812	246.61	2827

Table 3: Comparison of uniform sampling and our coreset method using TSP100-2D- $\mathcal{N}(0,1)$ as the training dataset on test data TSPLIB (Reinelt, 1991).

Sample size	Method	Test distribution	Greedy		Greedy+2-opt	
Sample size			Length (\downarrow)	Time (\downarrow)	Length (\downarrow)	Time (\downarrow)
128000	Org	$\mathcal{N}(0,1)$	129.35	108	112.23	106
	US	$\mathcal{N}(0,1)$	190.79	109	115.87	108
4003	CS	$\mathcal{N}(0,1)$	153.08	107	113.56	108
	CS-aligned	$\mathcal{N}(0,1)$	152.70	103	113.71	105
	US	$\mathcal{N}(0,1)$	166.40	106	114.47	108
8245	CS	$\mathcal{N}(0,1)$	140.49	107	113.04	106
	CS-aligned	$\mathcal{N}(0,1)$	140.18	104	112.91	104
	US	$\mathcal{N}(0,1)$	162.19	107	114.31	107
12951	CS	$\mathcal{N}(0,1)$	133.63	106	112.45	105
	CS-aligned	$\mathcal{N}(0,1)$	133.14	103	112.52	110

Table 10: Comparison of uniform sampling and our coreset method with training dataset TSP100-3D- $\mathcal{N}(0,1)$ on test data of varying sizes. We fix the sample size as 12058.

TSP size	Method	Test distribution	Greedy		Alignment time (↓)	
			Length (↓)	Time (↓)		
		$\mathcal{N}(0,1)$	30.02	77	-	
		$\mathcal{N}(0,2)$	61.03	76	-	
TSP-200	Org	$\mathcal{N}(0,4)$	109.78	77	-	
		$\mathcal{N}(0,8)$	126.15	76	-	
		$\mathcal{U}(0,10)$	128.35	77	-	
		$\mathcal{N}(0,1)$	48.66	682	-	
		$\mathcal{N}(0,2)$	101.71	682	-	
TSP-500	Org	$\mathcal{N}(0,4)$	184.94	682	-	
		$\mathcal{N}(0,8)$	210.36	680	-	
		$\mathcal{U}(0,10)$	212.62	683	-	
		$\mathcal{N}(0,1)$	69.08	2828	-	
		$\mathcal{N}(0,2)$	144.10	2826	-	
TSP-1000	Org	$\mathcal{N}(0,4)$	264.58	2824	-	
		$\mathcal{N}(0,8)$	303.02	2821	-	
		$\mathcal{U}(0, 10)$	313.23	2818	-	
		$\mathcal{N}(0,1)$	32.30	76	-	
		$\mathcal{N}(0,2)$	67.81	77	-	
	US	$\mathcal{N}(0,4)$	130.76	77	-	
		$\mathcal{N}(0,8)$	152.74	77	-	
		$\mathcal{U}(0,10)$	153.90	77	-	
		$\mathcal{N}(0,1)$	32.72	76	-	
		$\mathcal{N}(0,2)$	66.08	76	-	
ΓSP-200	CS	$\mathcal{N}(0,4)$	120.64	78	-	
		$\mathcal{N}(0,8)$	139.91	77	-	
		$\mathcal{U}(0,10)$	142.84	77	-	
		$\mathcal{N}(0,1)$	33.25	76	2	
		$\mathcal{N}(0,2)$	69.79	75	5	
	CS-aligned	$\mathcal{N}(0,4)$	118.44	77	7	
		$\mathcal{N}(0,8)$	135.90	77	10	
		$\mathcal{U}(0,10)$	138.27	76	12	
		$\mathcal{N}(0,1)$	58.45	682	-	
		$\mathcal{N}(0,2)$	127.53	681	-	
	US	$\mathcal{N}(0,4)$	264.93	682	-	
		$\mathcal{N}(0,8)$	316.73	681	-	
		$\mathcal{U}(0,10)$	318.39	680		
		$\mathcal{N}(0,1)$	59.69	682	-	
		$\mathcal{N}(0,2)$	122.24	681	-	

CSR:500ed onGext page

- continued from previous page						
TSP size	Method	Test distribution	$\begin{array}{c} \text{Greedy} \\ \text{Length} \ (\downarrow) \text{Time} \ (\downarrow) \end{array}$			
		$\mathcal{N}(0,4)$	231.96	682	-	
		$\mathcal{N}(0,8)$	266.08	677	-	
		$\mathcal{U}(0,10)$	268.75	680	-	
		$\mathcal{N}(0,1)$	56.47	682	16	
		$\mathcal{N}(0,2)$	121.33	681	19	
	CS-aligned	$\mathcal{N}(0,4)$	205.45	682	23	
		$\mathcal{N}(0,8)$	238.14	681	26	
		$\mathcal{U}(0,10)$	245.01	681	30	
		$\mathcal{N}(0,1)$	86.01	2828	-	
		$\mathcal{N}(0,2)$	191.39	2828	-	
	US	$\mathcal{N}(0,4)$	397.40	2825	-	
		$\mathcal{N}(0,8)$	470.55	2820	-	
		$\mathcal{U}(0,10)$	550.11	2819	-	
		$\mathcal{N}(0,1)$	86.57	2826	-	
	CS	$\mathcal{N}(0,2)$	181.84	2827	-	
TSP-1000		$\mathcal{N}(0,4)$	342.64	2822	-	
		$\mathcal{N}(0,8)$	395.66	2820	=	
		$\mathcal{U}(0,10)$	441.82	2818	-	
		$\mathcal{N}(0,1)$	86.87	2828	236	
		$\mathcal{N}(0,2)$	186.88	2823	433	
	CS-aligned	$\mathcal{N}(0,4)$	320.68	2825	624	

 $\mathcal{N}(0,8)$

 $\mathcal{U}(0,10)$

372.34

383.92

2820

2819

861

980

- continued from previous page

Experimental Results (TSP-3D)

Table 9: Comparison of uniform sampling and our coreset method using TSP100-3D- $\mathcal{N}(0,1)$ as the training dataset on test data TSP100-3D from different distributions.

Sample size	Method	Test distribution	Gree Length (\downarrow)	edy Time (\dot)	Alignment time (\downarrow)
		$\mathcal{N}(0,1)$	20.80	364	-
		$\mathcal{N}(0,2)$	42.25	366	-
128000	Org	$\mathcal{N}(0,4)$	76.57	362	-
		$\mathcal{N}(0,8)$	88.45	360	-
		U(0, 10)	90.55	358	-
		$\mathcal{N}(0,1)$	24.92	480	-
		$\mathcal{N}(0,2)$	49.96	482	-
	US	$\mathcal{N}(0,4)$	96.60	483	-
		$\mathcal{N}(0,8)$	116.65	482	-
		$\mathcal{U}(0,10)$	119.78	481	-
		$\mathcal{N}(0,1)$	24.89	364	-
		$\mathcal{N}(0,2)$	50.46	384	-
4103	CS	$\mathcal{N}(0,4)$	106.35	360	-
		$\mathcal{N}(0,8)$	109.12	360	-
		$\mathcal{U}(0,10)$	111.63	353	-
	CS-aligned	$\mathcal{N}(0,1)$	23.36	479	2
		$\mathcal{N}(0,2)$	47.00	480	4
		$\mathcal{N}(0,4)$	91.94	479	7
		$\mathcal{N}(0,8)$	106.50	482	9
		$\mathcal{U}(0,10)$	108.81	483	11
	US	$\mathcal{N}(0,1)$	23.62	477	-
		$\mathcal{N}(0,2)$	48.32	477	-
		$\mathcal{N}(0,4)$	92.92	484	-
		$\mathcal{N}(0,8)$	111.98	479	-
7960		$\mathcal{U}(0,10)$	115.62	481	-
		$\mathcal{N}(0,1)$	23.41	362	-
		$\mathcal{N}(0,2)$	47.10	361	-
	CS	$\mathcal{N}(0,4)$	86.20	362	-
		$\mathcal{N}(0,8)$	99.50	365	-
		$\mathcal{U}(0,10)$	101.25	359	-
	CS-aligned	$\mathcal{N}(0,1)$	22.83	476	12
		$\mathcal{N}(0,2)$	46.06	474	14
		$\mathcal{N}(0,4)$	85.71	483	16
		$\mathcal{N}(0,8)$	97.61	480	17
		\-/-/	99.10	481	19

Please refer to the original article for more experimental and technical details.

Conclusion and Future Work

Contributions:

- A coreset construction method and its acceleration
- Efficient Framework for NCO methods

□ Future Work:

- Extend the approach to other optimization problems with graph structures.
- Explore enhanced alignment and acceleration strategies for high-dimensional data.