

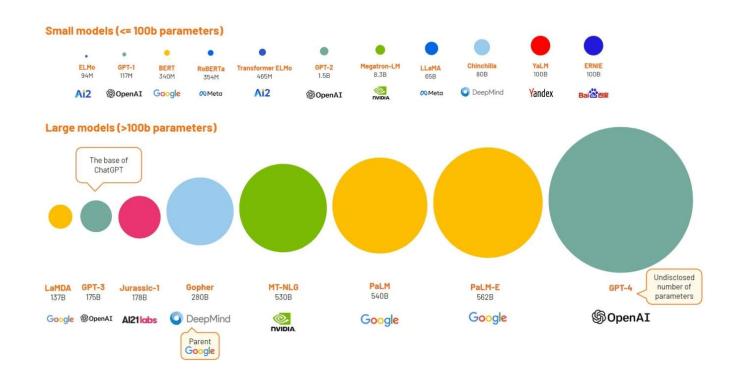
BEEM: Boosting Performance of Early Exit DNNs Using Multi-Exit Classifiers as Experts

AUTHORS: DIVYA JYOTI BAJPAI AND MANJESH KUMAR HANAWAL

PUBLISHED AT INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS (ICLR) 2025

Introduction

- To achieve better accuracy, DNNs have grown significantly.
 - LLAMA 7 Billion Parameters
 - \triangleright BLIP-2 **4.1 Billion** Parameters
 - ➤ GPT-3 **175 Billion** Parameters



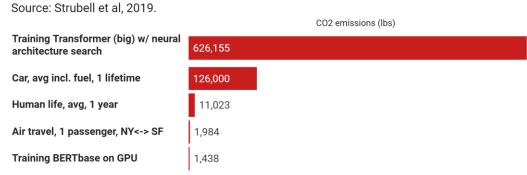
¹ Xin, Ji, et al. "DeeBERT: Dynamic early exiting for accelerating BERT inference." arXiv preprint arXiv:2004.12993 (2020)

² Zhou, Wangchunshu, et al. "Bert loses patience: Fast and robust inference with early exit." Advances in Neural Information Processing Systems 33 (2020): 18330-18341.

Introduction

- To achieve better accuracy, DNNs have grown significantly.
 - > LLAMA 7 Billion Parameters
 - \triangleright BLIP-2 **4.1 Billion** Parameters
 - ► GPT-3 **175 Billion** Parameters
- Large size improves accuracy but:
 - Requires more resources [1].
 - Environmental factors.
 - ➤ Inference latency.
- Overthinking [2]:
 - Datasets consist of a mixture of easy and hard samples.
 - > DNNs are highly overparameterized for easier inputs.

Carbon footprint comparison



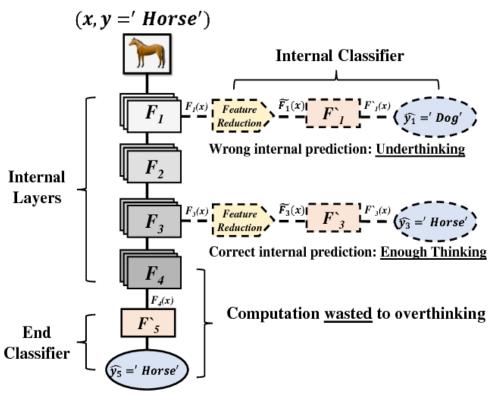
Air travel, 1 passenger, NY<-> SF

Training BERTbase on GPU

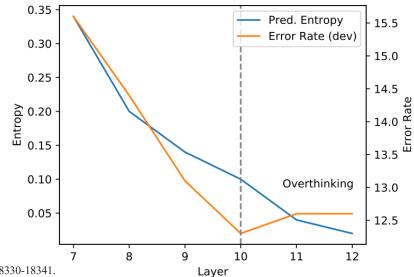
1,438

1 Xin, Ji, et al. "DeeBERT: Dynamic early exiting for accelerating BERT inference." arXiv preprint arXiv:2004.12993 (2020)

2 Zhou, Wangchunshu, et al. "Bert loses patience: Fast and robust inference with early exit." Advances in Neural Information Processing Systems 33 (2020): 18330-18341.



Correct end prediction: Overthinking



Early Exits

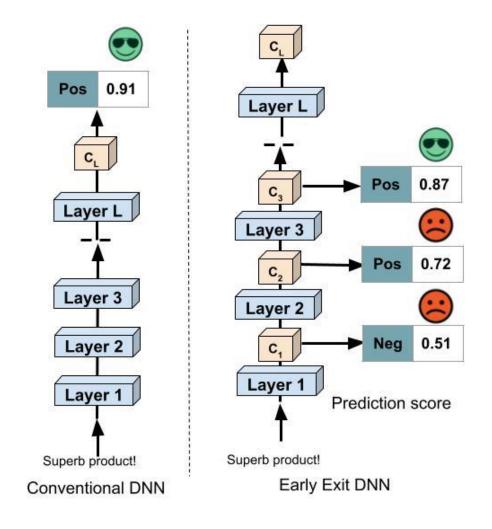
Early Exits are input adaptive inference methods where the inference is performed based on the sample complexity.

Advantages:

- Reduction in inference latency.
- Reduces overthinking.
- Input-adaptive inference.
- Generalizable.

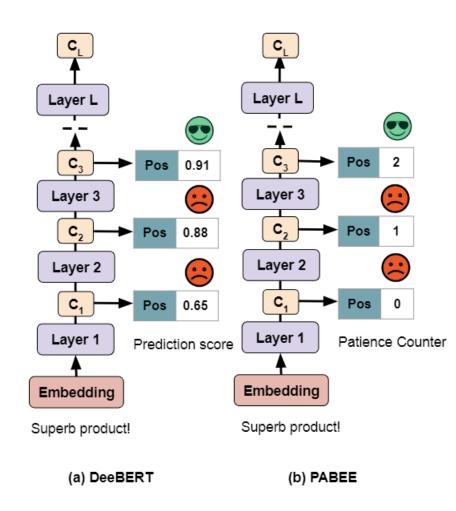
Disadvantages:

- Requires to train exits (Dataset required).
- Performance degradation where deeper layer knowledge is required.



Related Works and Problem setup

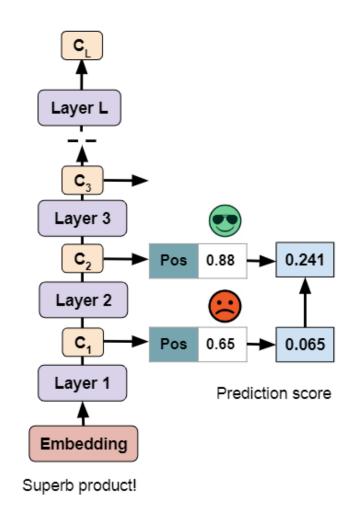
- Confidence-based exiting: Confidence (entropy or highest probability) above a threshold.
- Patience-based: Consistent predictions t times.
- Max of All: Consistency on a class for t times.
- Confidence based methods are overly confident towards a single class and classifier.
- Patience-based and Max of all methods treat each classifier equally.
- It also affects the adaptability of the model.
- There is a need of a confidence score that can utilize all the classifiers effectively.



5 presentation title

BEEM

- We propose an approach that works on ensemble learning principles.
- We treat each exit as an expert that provides predictions.
- Our method utilizes the strengths of individual exits.
- It proposes a confidence score that aggregates the weighted confidence of previous classifiers.
- The weights are provided based on accuracy of validation dataset or the cost associated with expert.



(c) Ours

BEEM-Training & inference

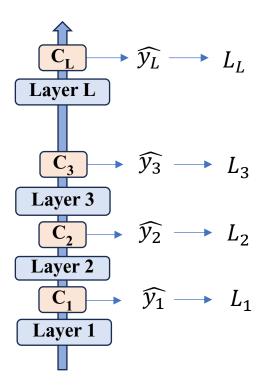
- We train the backbone using joint optimization.
- The exits are trained using CE and KD loss.
- After getting the backbone ready for inference, we define the score as:

$$S_{i} = \begin{cases} S_{i-1} + w_{i}C_{i} & \text{if } \hat{y}_{i-1} = \hat{y}_{i} \\ w_{i}C_{i} & \text{if } \hat{y}_{i-1} \neq \hat{y}_{i} \end{cases}$$

- Sample will exit if $S_i \ge \alpha$.
- Weights W_i can be set using accuracy on validation set.
- Or we can assign $w_i = \lambda i$ where λ is the cost.

Setting the thresholds:

- Note that we can change the error rates of internal classifiers using thresholds.
- We can perform better than final classifier if error rates of ICs q_{α_t} are smaller than FC.



Joint Optimization of Backbone

$$L_{i} = CE(y, \widehat{y}_{i}) + KD(y_{L}, y_{i})$$
Total loss:
$$L = \frac{\sum_{i \in [L]} iL_{i}}{\sum_{i \in [L]} i}$$

Threshold choice

- The threshold models the accuracy-efficiency trade-off.
- The error rates of the classifier depend on the threshold.

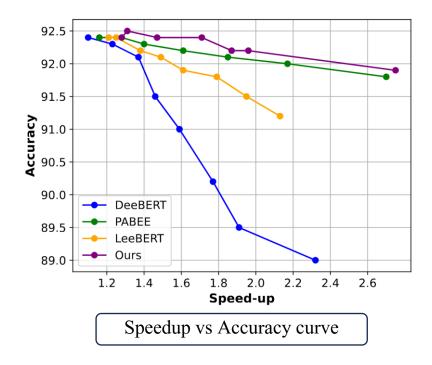
$$\begin{array}{ll}
\text{minimize} & \alpha_t \\
\alpha_t \in S
\end{array}$$
subject to $q_{\alpha_t} \leq p$,

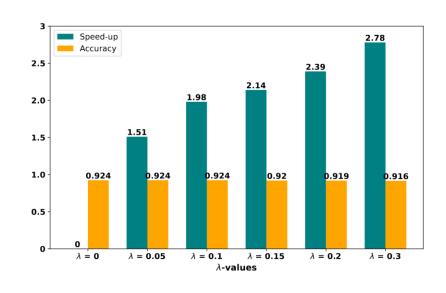
- We find the optimal α_t as the minimum α such that it is better than the final layer.
- This guarantees that our method is always better than the final layer.

Consider an early exit PLM with L layers. Let p denote the error rate of the final classifier and the error probability of the ith exit classifiers be q_i such that $q_i < \frac{a_i}{a_i + (\frac{1}{p} - 1)b_i^{i-1})}$ for all exit layers i = 1, 2, ... L - 1 where a_i and b_i are constants for a given exit i then BEEM performs better than the final layer.

Experiments

- We perform experiments on GLUE datasets, comprising of CoLA, RTE, QQP, SST-2, MNLI, QNLI datasets.
- We use BERT and ALBERT models and their base and large variants.
- We set the cost to be 0.1.
- All the metrics are same as used in CeeBERT.





Rate of change with λ .

9

presentation title

Results

Model/Data	SST-2		MNLI		RTE		QNLI		QQP			
	Acc	Speed	Acc	Speed	Acc	Speed	Acc	Speed	Acc	Speed		
Dev set												
ALBERT	92.4	1.00x	84.5	1.00x	77.9	1.00x	91.3	1.00x	90.6	1.00x		
ALBERT-9L	-1.6	1.33x	-3.2	1.33x	-2.5	1.33x	-2.7	1.33x	-1.5	1.33x		
DeeBERT	-2.3	1.72x	-2.9	1.65x	-3.1	1.78x	-1.9	1.57x	-2.5	1.81x		
ElasticBERT	-2.1	1.75x	-2.3	1.71x	-2.7	1.81x	-1.7	1.66x	-2.1	1.78x		
FastBERT	-1.1	1.85x	-0.3	1.61x	-0.2	1.79x	-0.8	1.71x	-0.3	1.88x		
PABEE	-0.1	1.87x	-0.5	1.85x	-0.7	1.64x	-0.6	1.81x	-0.2	1.68x		
ZTW	-0.2	1.64x	-0.3	1.67x	+0.2	1.63x	-0.3	1.75x	-0.1	1.71x		
PCEEBERT	+0.1	1.24x	0.0	1.31x	+0.3	1.27x	-0.1	1.21x	+0.1	1.37x		
LeeBERT	0.0	1.78x	-0.2	1.74x	-0.1	1.59x	+0.1	1.79x	-0.2	1.97x		
PALBERT	-0.4	1.54x	-0.8	1.61x	+0.3	1.45x	-0.2	1.59x	-0.1	1.63x		
JEI-DNN	-0.1	1.77x	+0.1	1.67x	0.0	1.35x	-0.1	1.43x	+0.2	1.57x		
BEEM-C	0.0	1.71x	+0.1	2.03x	+0.4	1.79x	0.0	1.90x	0.0	1.93x		
BEEM-A	+0.4	1.98x	+0.3	1.96x	+0.7	1.89x	+0.2	1.92x	+0.5	2.09x		
Test set												
ALBERT	92.3	1.00x	84.2	1.00x	72.1	1.00x	90.9	1.00x	80.1	1.00x		
ZTW	-0.4	1.61x	-0.5	1.52x	+0.1	1.64x	-0.1	1.59x	-0.5	1.81x		
LeeBERT	-0.5	1.79x	-0.9	1.88x	0.0	1.68x	-0.4	1.72x	-0.3	1.86x		
PALBERT	-0.3	1.49x	-1.1	1.72x	+0.2	1.27x	-0.4	1.51x	-0.3	1.50x		
JEI-DNN	-0.1	1.35x	-0.7	1.59x	0.0	1.36x	-0.2	1.39x	0.0	1.47x		
BEEM-C	-0.2	1.98x	-0.4	1.95x	+0.1	1.74x	+0.1	1.81x	+0.1	1.97x		
BEEM-A	+0.4	1.91x	-0.3	2.06x	+0.6	1.77x	+0.5	1.88x	+0.2	1.95x		

Data	R	TE	Co)LA	QQP		
	Acc	Spd	Acc	Spd	Acc	Spd	
AB-L	80.5	1.00x	60.9	1.00x	91.1	1.00x	
Our-A	+1.8	2.04x	+1.3	2.85x	+0.1	3.33x	
B-L	70.9	1.00x	64.3	1.00x	91.2	1.00x	
Our-A	+0.5	1.81x	+0.9	1.71x	+0.3	2.51x	

Table 4: This table provides results on the large variants of (AL)BERT models compared with BEEM-A. AB-L is ALBERT-Large and B-L is BERT-Large.

Table 1: Main results: This table compares BEEM against all the state-of-the-art early exiting baselines. We report the accuracy (Acc in %) and Speed-up (Speed).

Conclusion & Future work

• Conclusion:

- We proposed a method that gives better results than final classifier.
- It leverages the ensemble learning principles.
- It also provides a method to set the thresholds based on error rates.
- Results on GLUE tasks demonstrate its effectives.

• Future works:

- By the method proposed, it can be used for adapting across domains.
- Also, we can have small separate model to learn the weights of the exits but it can make the model complex.

11 presentation title