

Matcha: Mitigating Graph Structure Shifts with Test-Time Adaptation

Wenxuan Bao Zhichen Zeng

Zhining Liu Hanghang Tong

Jingrui He

University of Illinois Urbana-Champaign {wbao4,zhichenz,liu326,htong,jingrui}@illinois.edu

Challenge: Distribution Shifts in Graphs

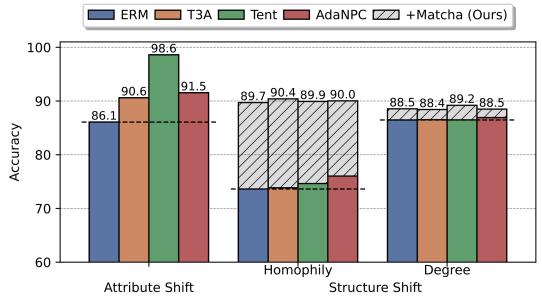
Graph neural networks (GNNs) are vulnerable to distribution shifts.

- Attribute shifts: Node feature distributions are different.
 - LinkedIn: Share research & find jobs.
 - Instagram: Share trips & activities.
- Structure shifts: Node connectivity patterns are different.
 - LinkedIn: Follow more professional colleges.
 - Instagram: Follow more family & friends.
- Structure shifts include, but not limit to:
 - Degree shift: Changes in average node degree.
 - Homophily shift: Changes in average node homophily.

Test-Time Adaptation

- Test-Time Adaptation (TTA) addresses distribution shifts by adapting a source model to the target domain without access to source data.
- Many existing TTA methods (T3A, Tent, AdaNPC) are developed for images.
- These methods perform well under attribute shifts, but often fail under structure shifts.

- Why does this performance gap exist?
- How can we enhance the performance of TTA under graph structure shifts?



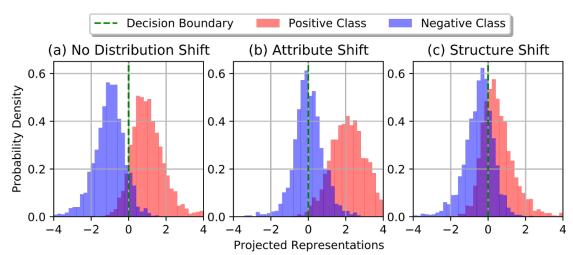
^[1] Yusuke Iwasawa, Yutaka Matsuo. Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization. NeurIPS 2021.

^[2] Dequan Wang, et al. Tent: Fully Test-Time Adaptation by Entropy Minimization. ICLR 2021.

^[3] Yifan Zhang, et al. AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation. ICML 2023.

Why Generic TTA Fails on Structure Shifts?

 We visualize the distribution of node representations (projected to 1-D).



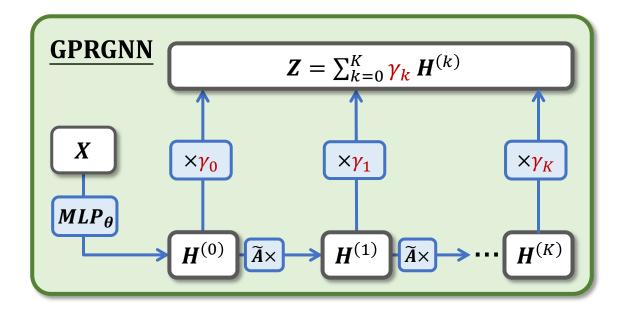
Histograms of Projected Representations Under Different Distribution Shifts

Attribute shifts and structure shifts have different impact patterns!

- Attribute shifts introduce classifier bias:
 - Node representations remain discriminative.
 - Can be handled by adjusting the decision boundary.
- Structure shifts introduce representation degradation:
 - Node representations are overlapping.
 - Cannot be handled by adjusting the decision boundary.

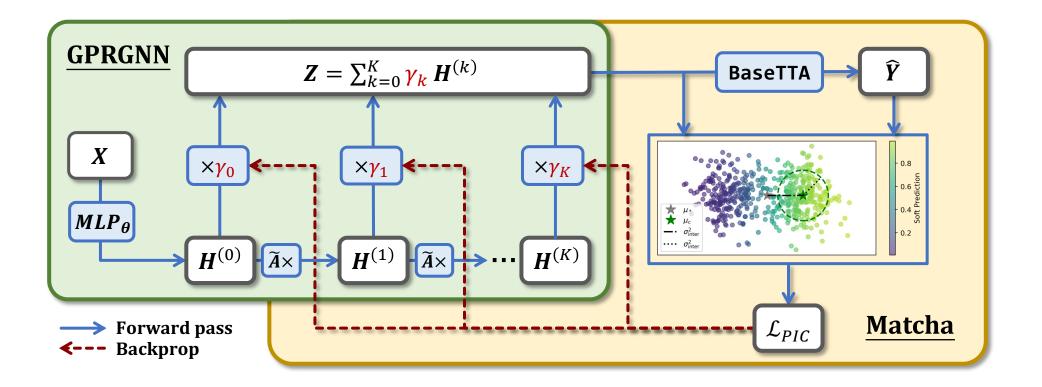
Adapt the Hop-Aggregation Parameters

- Many GNN architectures have hopaggregation parameters:
 - Control how GNNs integrate node features with neighbor information across different hops.
 - Example: $\gamma = [\gamma_0, \cdots, \gamma_K]$ in GPRGNN.
- Structure shifts does not affect $H^{(0)}$, but change the signal-to-noise ratio in $H^{(1)}, \dots, H^{(K)}$.
 - The hop-aggregation parameters γ should be adjusted accordingly!



Matcha: Overview

 We propose Matcha to enhance the performance of generic TTA methods by adjusting the hop-aggregation parameters.

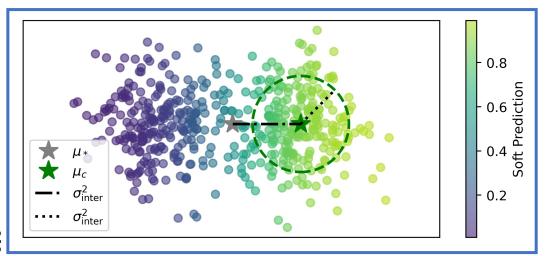


Prediction-Informed Clustering Loss

We proposed a new loss function: prediction-informed clustering (PIC) loss

$$\mathcal{L}_{\text{PIC}} = \frac{\sigma_{\text{intra}}^2}{\sigma_{\text{intra}}^2 + \sigma_{\text{inter}}^2}$$
, where

- Intra-class variance: $\sum_{i=1}^{M}\sum_{c=1}^{C}\widehat{Y}_{i,c}\|\mathbf{z}_i-\boldsymbol{\mu}_c\|_2^2$
- Inter-class variance: $\sum_{c=1}^{C} \left(\sum_{i=1}^{M} \widehat{Y}_{i,c}\right) \|\mu_c \mu_*\|_2^2$



- Centroid for class
$$c$$
: $\mu_c = \frac{\sum_{i=1}^M \widehat{Y}_{i,c} \mathbf{z}_i}{\sum_{i=1}^M \widehat{Y}_{i,c}}$ Centroid for all nodes: $\mu_* = \frac{1}{M} \sum_{i=1}^M \mathbf{z}_i$

- Intuition
 - Small intra-class variance $\sigma_{\rm intra}^2$, large inter-class variance $\sigma_{\rm inter}^2$

Integration of Generic TTA Methods

 Integrate generic TTA algorithms to handle structure shift and attribute shift simultaneously

In each optimization step,

Algorithm 1 Matcha Matcha (target graph

Matcha (target graph \mathcal{T} , featurizer $f_{\theta,\gamma}$, classifier $g_{\boldsymbol{w}}$, baseline TTA method BaseTTA)

- 1: for epoch t = 1 to T do
- Apply generic TTA:
 - $\hat{m{Y}} \leftarrow exttt{BaseTTA}(\mathcal{T}, f_{m{ heta}, m{\gamma}}, g_{m{w}})$
- 4: return $\hat{Y} \leftarrow \texttt{BaseTTA}(\mathcal{T}, f_{\theta, \gamma}, g_w)$
- First apply base TTA algorithm to get predictions $\{\widehat{\pmb{Y}}_{i,c}\}$
- Compute PIC loss with $\{\widehat{Y}_{i,c}\}$ to optimize node representation
- Synergy between representation quality and prediction accuracy:
 - Better prediction → better pseudo-class for PIC loss, improving representation
 - Better representation quality → better prediction

Experiments: Handle Various Structure Shifts

- Matcha consistently enhances the performance of base TTA methods
 - Homo (homophilious), hetero (heterophilious), high (high degree), low (low degree)

Table 1: Accuracy (mean \pm s.d. %) on CSBM with structure shifts and attribute shifts.

Method	Homophily shift		Degree shift		Attribute + homophily shift		Attribute + degree shift	
	$homo \rightarrow hetero$	$hetero \to homo$	$high \rightarrow low$	$low \rightarrow high$	$homo \rightarrow hetero$	$hetero \to homo$	$high \rightarrow low$	$low \rightarrow high$
ERM + Matcha	73.62 ± 0.44 89.71 ± 0.27	$76.72 \pm 0.89 \\ 90.68 \pm 0.26$	86.47 ± 0.38 88.55 ± 0.44	92.92 ± 0.43 93.78 ± 0.74	61.06 ± 1.67 85.34 ± 4.68	$72.61 \pm 0.38 \\ 74.70 \pm 0.99$	77.63 ± 1.13 78.29 ± 1.41	73.60 ± 3.53 73.86 ± 4.20
T3A + Matcha	73.85 ± 0.24 90.40 ± 0.11	76.68 ± 1.08 90.50 ± 0.24	86.52 ± 0.44 88.42 ± 0.60	92.94 ± 0.37 93.83 ± 0.41	65.77 ± 2.11 88.49 ± 0.58	$72.92 \pm 0.90 \\ 79.34 \pm 1.85$	80.89 ± 1.28 81.82 ± 1.36	81.94 ± 3.24 82.12 ± 4.03
Tent + Matcha	$74.64 \pm 0.38 \\ 89.93 \pm 0.16$	79.40 ± 0.57 91.26 ± 0.08	86.49 ± 0.50 89.20 ± 0.20	92.84 ± 0.18 94.88 ± 0.09	74.42 ± 0.41 90.12 \pm 0.07	79.57 ± 0.40 91.15 \pm 0.20	86.05 ± 0.33 87.76 ± 0.16	93.06 ± 0.24 95.04 ± 0.06
AdaNPC + Matcha	$76.03 \pm 0.46 \\ 90.03 \pm 0.33$	81.66 ± 0.17 90.36 ± 0.67	86.92 ± 0.38 88.49 ± 0.31	91.15 ± 0.39 92.84 ± 0.57	63.96 ± 1.31 85.81 ± 0.30	$76.33 \pm 0.71 \\ 77.63 \pm 1.55$	77.69 ± 0.91 78.41 ± 1.03	76.24 ± 3.06 76.31 ± 3.68
GTrans + Matcha	74.01 ± 0.44 89.47 ± 0.20	$77.28 \pm 0.56 \\ 90.31 \pm 0.31$	86.58 ± 0.11 87.88 ± 0.77	92.74 ± 0.13 93.23 ± 0.52	71.60 ± 0.60 88.88 ± 0.38	$74.45 \pm 0.42 \\ 76.87 \pm 0.66$	83.21 ± 0.25 83.41 ± 0.16	89.40 ± 0.62 89.98 ± 0.93
SOGA + Matcha	$74.33 \pm 0.18 \\ 89.92 \pm 0.26$	83.99 ± 0.35 90.69 ± 0.27	86.69 ± 0.37 88.83 ± 0.32	93.06 ± 0.21 94.49 ± 0.23	70.45 ± 1.71 88.92 ± 0.28	$76.41 \pm 0.79 \\ 90.14 \pm 0.33$	81.31 ± 1.03 87.11 ± 0.28	88.32 ± 1.94 93.38 ± 1.06
GraphPatcher + Matcha	79.14 ± 0.62 91.28 ± 0.28	$82.14 \pm 1.11 \\ 90.66 \pm 0.15$	87.87 ± 0.18 88.01 ± 0.18	93.64 ± 0.45 93.88 ± 0.69	$64.16 \pm 3.49 \\ 89.99 \pm 0.41$	76.98 ± 1.04 87.94 ± 0.39	76.99 ± 1.43 78.43 ± 1.84	73.31 ± 4.48 77.86 ± 4.14

Experiments on Real-World Setting

- Syn-Cora and Syn-Products
 - Only homophily shift
- Twitch-E and OGB-Arxiv
 - Natural attribute and structure shift
 - We randomly delete homophilic edges to inject more homophily and degree shifts

Matcha also improves the model performance

Table 2: Accuracy on real-world datasets.

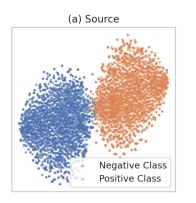
Method	Syn-Cora	Syn-Products	Twitch-E	OGB-Arxiv
ERM + Matcha	$65.67 \pm 0.35 \\ 78.96 \pm 1.08$	37.80 ± 2.61 69.75 ± 0.93	56.20 ± 0.63 56.76 ± 0.22	$41.06 \pm 0.33 \\ 41.74 \pm 0.34$
T3A + Matcha	$68.25 \pm 1.10 \\ 78.40 \pm 1.04$	47.59 ± 1.46 69.81 ± 0.36	$56.83 \pm 0.22 \\ 56.97 \pm 0.28$	38.17 ± 0.31 38.56 ± 0.27
Tent + Matcha	$66.26 \pm 0.38 \\ 78.87 \pm 1.07$	29.14 ± 4.50 68.45 ± 1.04	58.46 ± 0.37 58.57 ± 0.42	$34.48 \pm 0.28 \\ 35.20 \pm 0.27$
AdaNPC + Matcha	67.34 ± 0.76 77.45 ± 0.62	44.67 ± 1.53 71.66 ± 0.81	55.43 ± 0.50 56.35 ± 0.27	$40.20 \pm 0.35 \\ 40.58 \pm 0.35$
GTrans + Matcha	68.60 ± 0.32 83.49 ± 0.78	43.89 ± 1.75 71.75 \pm 0.65	$56.24 \pm 0.41 56.75 \pm 0.40$	$41.28 \pm 0.31 \\ 41.81 \pm 0.31$
SOGA + Matcha	$67.16 \pm 0.72 \\ 79.03 \pm 1.10$	40.96 ± 2.87 70.13 ± 0.86	$56.12 \pm 0.30 \\ 56.62 \pm 0.17$	41.23 ± 0.34 41.78 ± 0.34
GraphPatcher + Matcha	$63.01 \pm 2.29 \\ 80.99 \pm 0.50$	36.94 ± 1.50 69.39 ± 1.29	57.05 ± 0.59 57.41 ± 0.53	41.27 ± 0.87 41.83 ± 0.90

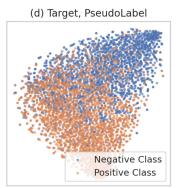
Experiments: Visualization

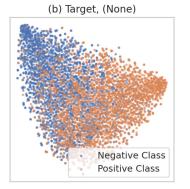
 Matcha successfully restores the quality of node representations under structure shifts

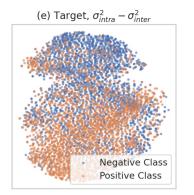
 Better representations result in higher accuracy

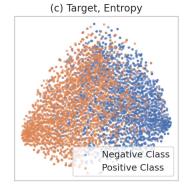
Loss	Homoph	nily shift	Degree shift		
	$hom \rightarrow het$	$het \rightarrow hom$	$hi \rightarrow lo$	$lo \rightarrow hi$	
(None)	73.6 ± 0.4	76.7 ± 0.9	86.5 ± 0.4	92.9 ± 0.4	
Entropy	75.9 ± 0.7	90.0 ± 0.2	86.8 ± 0.3	93.8 ± 0.7	
PseudoLabel	77.3 ± 3.0	89.4 ± 0.2	86.7 ± 0.3	93.7 ± 0.7	
$\sigma_{ m intra}^2 - \sigma_{ m inter}^2$	76.1 ± 0.4	72.4 ± 0.7	82.6 ± 1.0	92.9 ± 0.4	
PIC (Ours)	$\textbf{89.7}\pm\textbf{0.3}$	$\textbf{90.7}\pm\textbf{0.3}$	$\textbf{88.6}\pm\textbf{0.4}$	$\textbf{93.8}\pm\textbf{0.7}$	

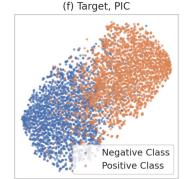












Key Takeaways

 Focusing on graph test-time adaptation (TTA), we find that attribute shifts and structure shifts have different impact patterns, which limit the performance of generic TTA algorithms.

- We propose Matcha, adjusting the hop-aggregation parameters in GNNs.
 - Address structure shifts effectively
 - Compatible to generic TTA algorithms to handle attribute shifts

 Our experiments show that Matcha improves model performance across different types of structure shifts.

