

Single Teacher, Multiple Perspectives: Teacher Knowledge Augmentation for Enhanced Knowledge Distillation

Md Imtiaz Hossain, Sharmen Akhter, Choong Seon Hong * & Eui-Nam Huh *
Department of Computer Science & Engineering, Kyung Hee University, South Korea
Email: {hossain.imtiaz, sharmen, cshong, johnhuh}@khu.ac.kr

The Thirteenth International Conference on Learning Representations Singapore - 2025

Paper: https://openreview.net/forum?id=DmEHmZ89iB
Code: https://openreview.net/forum?id=DmEHmZ89iB

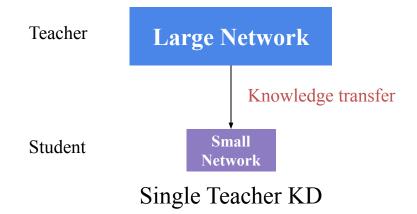
Contents

- Introduction
- Motivation
- Problem Statement
- Proposed Methodology
- Experimental Results
- Conclusion

Introduction

What is knowledge distillation

- Transfers knowledge from large to small model
- Model compression technique

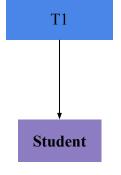


Motivation

ICLR International Conference on Learning Representations-2025

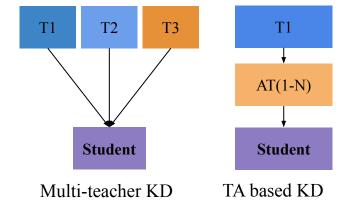
Diversity & complexity analysis

• Single teacher vs Multi-teacher



Single Teacher KD

- Requires training single teachers
- Computationally less expensive
- Lacks diversity

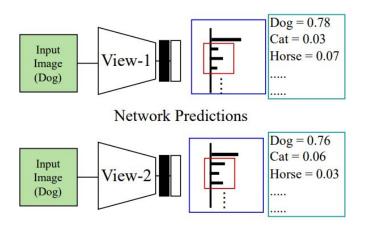


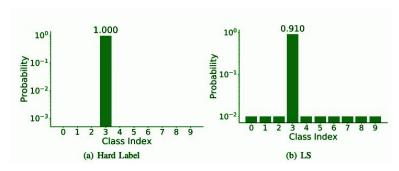
- Enhances the performance of student
- Requires training multiple teachers
- Computationally expensive
- Provides multiple diversity

Problem Statement

One-hot vs label smoothing vs logits

- One-hot: impossible, rigid, no inter class relationship, no diversity
- Label smoothing: no inter class relationship, no diversity
- Teacher logit: inter-class relationship but lacks perspectives or diversity



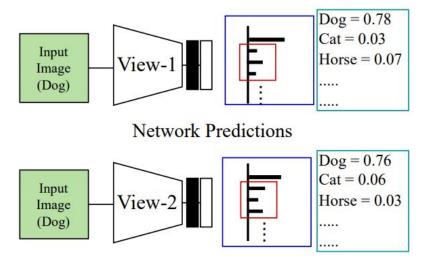


Understanding knowledge

Towards TeKAP

What multi-teacher based KD does?

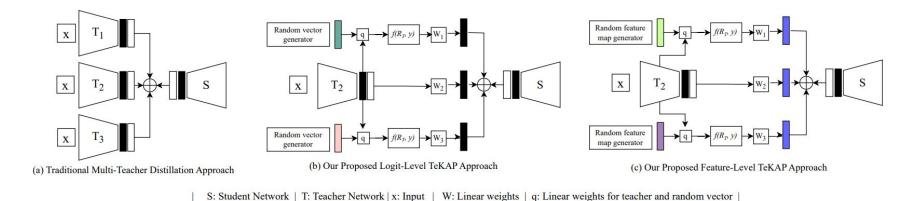
- Differences in predictions
- Differences in inter-class relationships i.e., probabilities
- Differences in feature-level knowledge



Generating multiple synthetic knowledge from one original teacher

Example of shifted inter-class relationship

Proposed Method



TeKAP for (b) logit-level and (c) feature-level

Proposed Method

Feature-Level Distortion

$$f_T^{(i)}(x) = \alpha \times \eta_i + (1 - \alpha) \times f_T(x)$$

Total Feature-Level Loss

$$\mathcal{L}_{feat} = \lambda L(f_S(x), f_T(x)) + (1 - \lambda) \sum_{i=1}^{N} L(f_S(x), f_T^i(x))$$

Logit-Level Distortion

$$z_T^{(i)}(x) = \alpha \times \eta_i + (1 - \alpha) \times z_T(x)$$

Total Distillation Loss

$$\mathcal{L}_{TeKAP} = \alpha \mathcal{L}_{feat} + \beta \mathcal{L}_{logit} + \gamma \mathcal{L}_{cel}$$

Total Logit-Level Loss

$$\mathcal{L}_{logits}^{\text{perturb}} = \lambda \mathcal{L}_{KD}(z_S(x), z_T(x)) + (1 - \lambda) \sum_{i=1}^{N} \mathcal{L}_{KD}(z_S(x), z_T^{(i)}(x))$$

Here, α , β , and γ are the balancing weights

Theoretical Justification

- Justification for Feature-level Perturbation
 - As a form of regularization [2]
 - Exposes student to a range of variations
 - Forced to learn a robust inductive bias
 - Mapping without being overconfident [3]

- Justification for Logit-level Perturbation
 - Noisy logits act as different perspectives
 - Different sets of combinations [1]
 - Generalize across multiple noisy versions
 - A broader range of decision boundaries

Experimental Results

Comparison with SOTA teaching assistant based approach

Teacher Student	resnet32x4 resnet8x4	WRN_40_2 WRN_40_1	WRN_40_2 WRN_16_2	VGG13 VGG8	resnet56 resnet20	resnet32x4 ShuffleNetV1	resnet32x4 ShuffleNetV2	WRN-40-2 ShuffleNetV1
TAKD	73.81	73.78	75.12	73.23	70.83	74.53	74.82	75.34
TeKAP (L)	74.79	73.80	75.21	74.00	71.32	74.92	75.43	76.75
TeKAP (F+L)	75.98	74.41	76.20	74.42	71.92	75.60	77.38	76.59

Effect on adversarial robustness

	Teacher	Student	KD	KD + TeKAP (L)
top-1	29.88	21.44	21.12	22.47
top-5	51.43	44.47	44.04	45.72

Comparison with KD on ImageNet

Set	Teacher	Student	KD	KD + TeKAP (L)
Top-1	26.69	30.25	29.59	29.33
Top-5	8.58	10.93	10.30	10.08

TeKAP on class imbalance dataset

Methods	resnet32x4-resnet8x4	WRN_40_2-WRN_16_2	VGG13-VGG8
Baseline (KD)	41.71	52.08	47.52
+ TeKAP (Ours)	46.42	52.72	51.25

Transferability to different dataset

Set	Student	KD	KD + TeKAP (L)
CIFAR100-STL10	70.33	71.01	72.94
CIFAR100-TinyImageNet	34.82	35.53	35.81

Slide No: 10

Experimental Results

Comparison with SOTAs

	Teacher	resnet32x4	WRN_40_2		
Baselines	Student	resnet8x4	WRN_40_1		
Duscinies	Teacher	79.42	75.61		
	Student	72.50 76.32 76.59 77.08 77.36 73.93	71.98		
	DKD	76.32	74.81		
Single Teacher	+ TeKAP	76.59	75.33		
Single Teacher	MLKD	77.08	75.35		
	+ TeKAP	77.36	75.67		
	TAKD	73.93	73.83		
	+ TeKAP	74.81	74.37		
Multi- Teacher	CA-MKD	75.90	74.56		
	+ TeKAP	76.34	74.98		
	DGKD	75.31	74.23		
	+ TeKAP	76.17	75.14		

Effect of TeKAP on diverse network at logit and feature level

	[To Similar Architecture				To Different Architecture			
Teacher	resnet32x4	WRN_40_2	WRN_40_2	VGG13	resnet56	resnet32x4	resnet32x4	WRN-40-2	
Student	resnet8x4	WRN_40_1	WRN_16_2	VGG8	resnet20	ShuffleNetV1	ShuffleNetV2	ShuffleNetV1	
Teacher	79.42	75.61	75.61	74.64	72.34	79.42	74.64	75.61	
Student	72.50	71.98	73.26	70.36	69.06	70.50	70.36	70.50	
KD	73.33	73.69	74.92	72.98	70.66	74.07	72.98	74.83	
+ TeKAP (L)	74.79	73.80	75.21	74.00	71.32	74.92	75.43	76.75	
CRD	75.51	74.14	75.48	73.94	71.16	75.11	75.65	76.05	
+ TeKAP (F)	75.65	74.21	75.83	74.10	71.71	75.55	76.23	76.60	
TeKAP (F+L)	75.98	74.41	76.20	74.42	71.92	75.60	77.38	76.59	

Conclusion

- Improved knowledge sources
- Enhances diversity
- Explains why knowledge distillation works and leveraged controlled randomness
- Generates multiple synthetic teacher knowledge perspectives,
- Single teacher, multiple perspectives
- <u>Limitations & Future Works:</u>
 - Does not optimize the noise
 - Remains train-free
 - Plan to explore optimization-based techniques

References

- 1. Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. *Learning from noisy labels with deep neural networks: A survey.* IEEE transactions on neural networks and learning systems, 34 (11):8135–8153, 2022.
- 2. Yehui Tang, Yunhe Wang, Yixing Xu, Boxin Shi, Chao Xu, Chunjing Xu, and Chang Xu. *Beyond dropout: Feature map distortion to regularize deep neural networks*. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 5964–5971, 2020.
- 3. Zeyuan Allen-Zhu and Yuanzhi Li. *Towards understanding ensemble, knowledge distillation and self-distillation in deep learning.* arXiv preprint arXiv:2012.09816, 2020.
- 4. Rafael Muller, Simon Kornblith, and Geoffrey E Hinton. *When does label smoothing help?* "Advances in neural information processing systems, 32, 2019.

Thank You!

The Thirteenth International Conference on Learning Representations Singapore - 2025

Paper: https://openreview.net/forum?id=DmEHmZ89iB

Code: https://github.com/mdimtiazh/TeKAP