Continual Slow-and-Fast Adaptation of Latent Neural Dynamics (CoSFan): Meta-Learning What-How & When to Adapt

Ryan Missel & Linwei Wang {rxm7244,Linwei.Wang}@rit.edu GCCIS, Rochester Institute of Technology

Overview

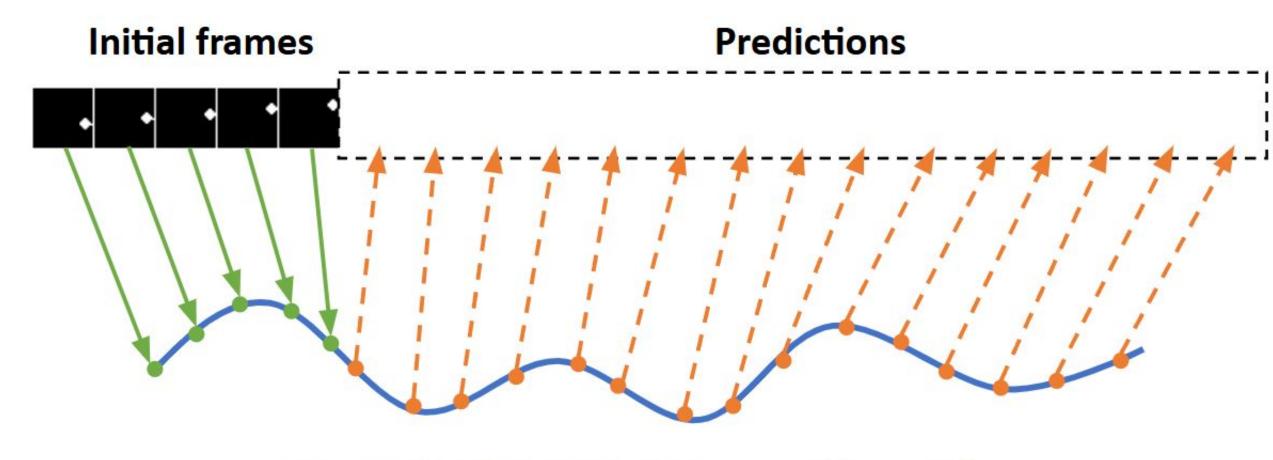
- Forecasting from high-dimensional time-series requires adapting to systems with varying underlying dynamics. Standard training on non-stationary systems risks catastrophic forgetting when dynamics shift over time.
- Present CoSFan, a continual meta-learning framework that enables both slow-and-fast adaptation of latent dynamics functions to few-shot samples.

Novel framework:

- A feed-forward hyper-network meta-model that infers what system is observed and how to adapt the latent dynamics.
- A continual learning strategy that detects when task shifts occur and identifies the relation to prior tasks via task-relational reservoir sampling.

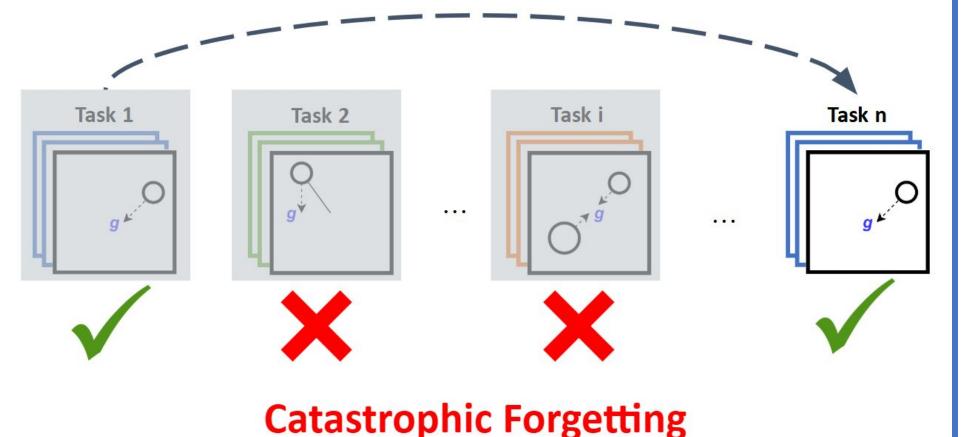
Problem Setting

 Given a few initial frames, leverage a Sequential Latent Variable Model (sLVM) to forecast it in a latent space before decoding to the data space.

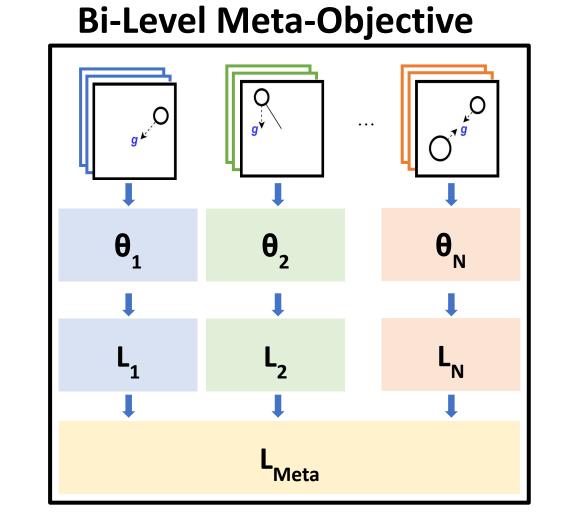


Latent dynamic function $z_t = f(z_{< t}; \theta_z)$

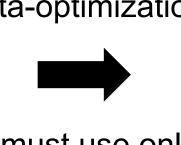
- Dynamical systems stream in over time
- Task boundaries are unknown
- Task labels are unknown
- Old tasks can re-emerge later
- Assume local stationarity, a minimum amount of time tasks stay the same



Limitation of CML



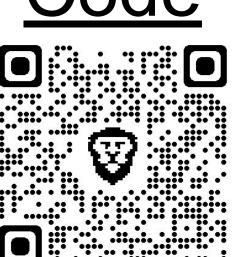
Without labels for context-query pairing, we cannot use standard meta-optimization.

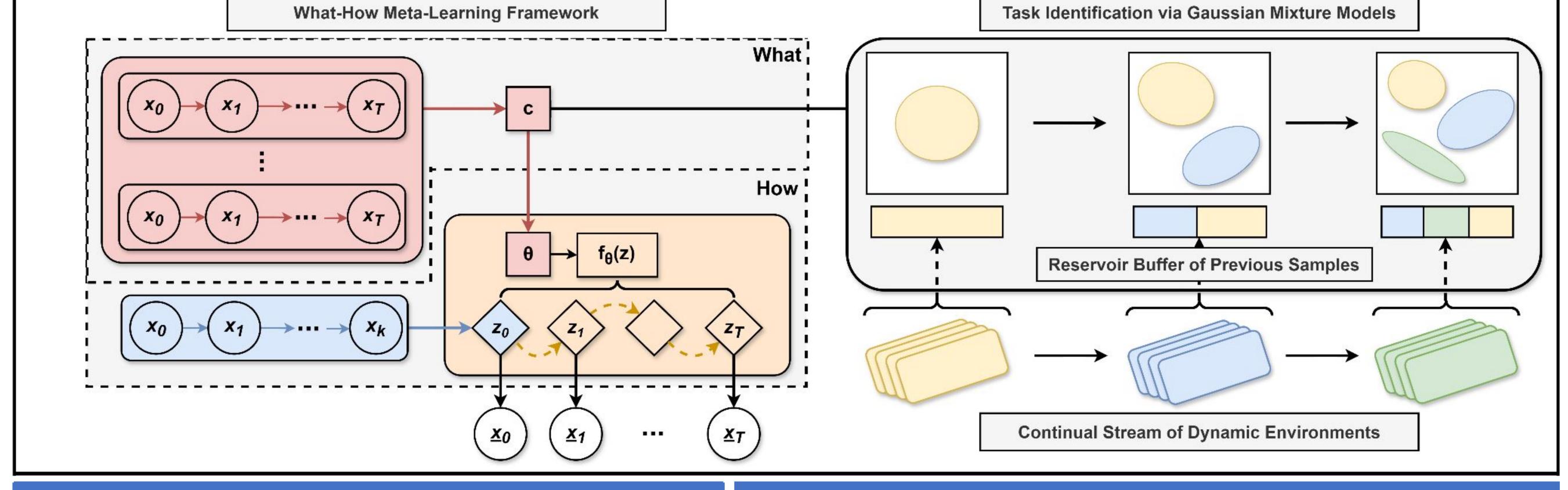


We must use online objective approximations, which are insufficient in broader domains.

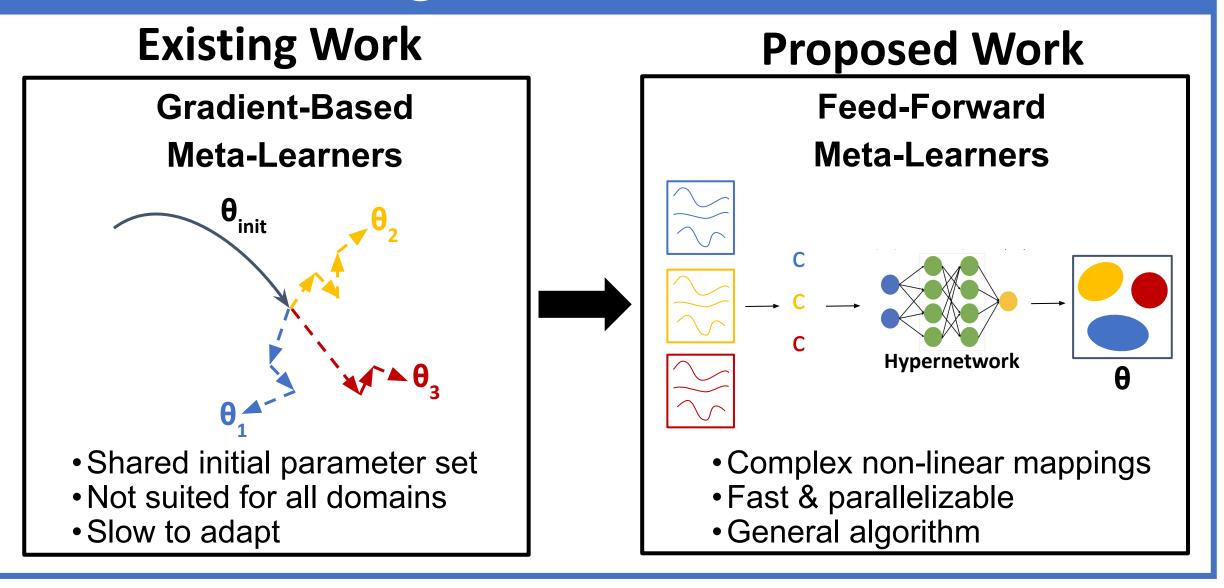
Online Meta-Objective

Paper



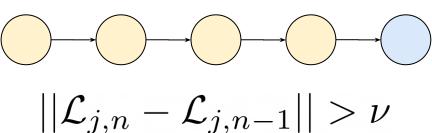


Algorithmic Priors



Task ID & Relational-Modeling

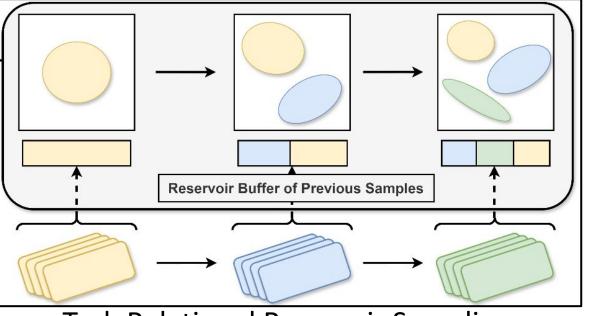
Detecting Boundaries



- (Caccia, NeurIPS 2020)
- Use previous timesteps as context
- Performance dip when task swaps
- Threshold v on per-step difference

Task Identification

Task-Aware Reservoir Sampling



Task-Relational Reservoir Sampling

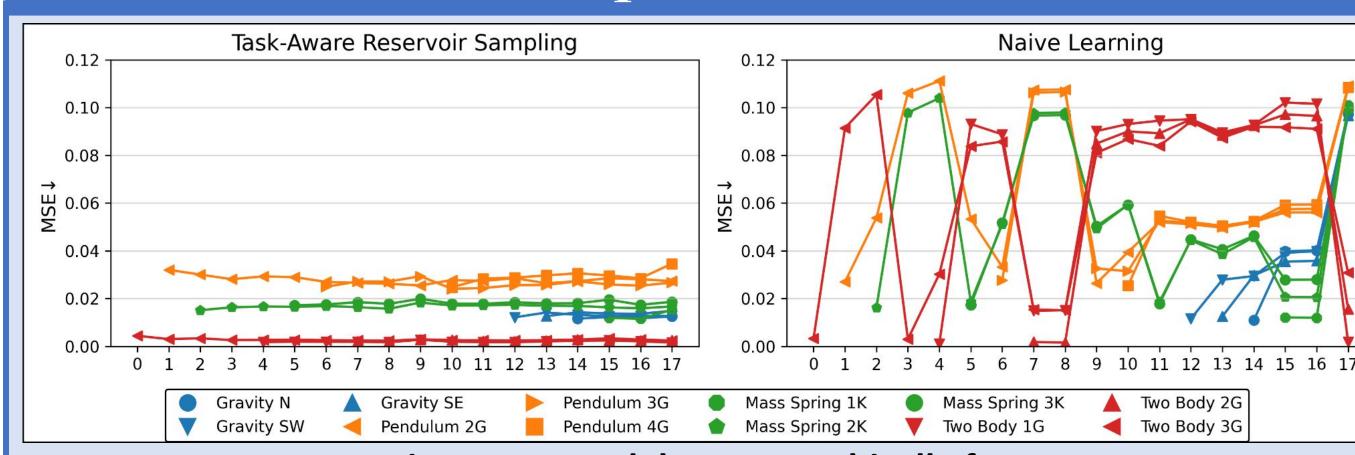
Adaptation Efficiency

Table 1: CML adaptation efficiency comparison. All methods were adapted on 1200 batches. MAML-X refers to the X number of inner-steps.

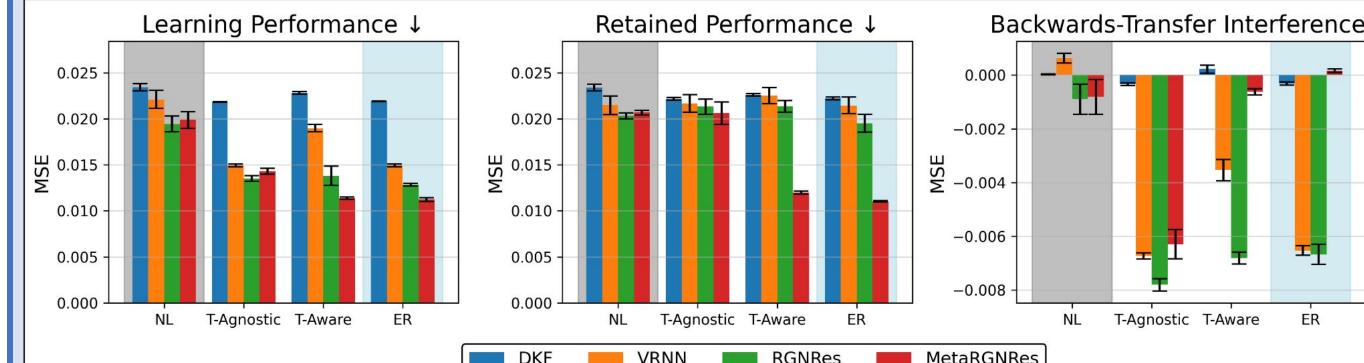
	Model	Metric	T-Agnostic	T-Aware
	MAML-1	TTA-1 [s] TTA-12 [s] TTT [min]	0.0148(0.0009) 0.0149(0.0069) 38.8(0.2)	0.0150(0.0080) 0.1602(0.0058) 116.3(11.0)
	MAML-5	TTA-1 [s] TTA-12 [s] TTT [min]	0.0618(0.0077) 0.0636(0.0074) 91.5(0.7)	0.0670(0.0096) 0.7475(0.0413) 302.8(22.7)
	FF	TTA-1 [s] TTA-12 [s] TTT [min]	0.0018(0.0048) 0.0018(0.0043) 30.0(0.3)	0.0017(0.0043) 0.0017(0.0005) 85.2(5.5)

- Feed-Forward adaptation is magnitudes faster than gradient-based.
- Gradient-based scales poorly to the number of simultaneous tasks while Feed-Forward is agnostic in speed.

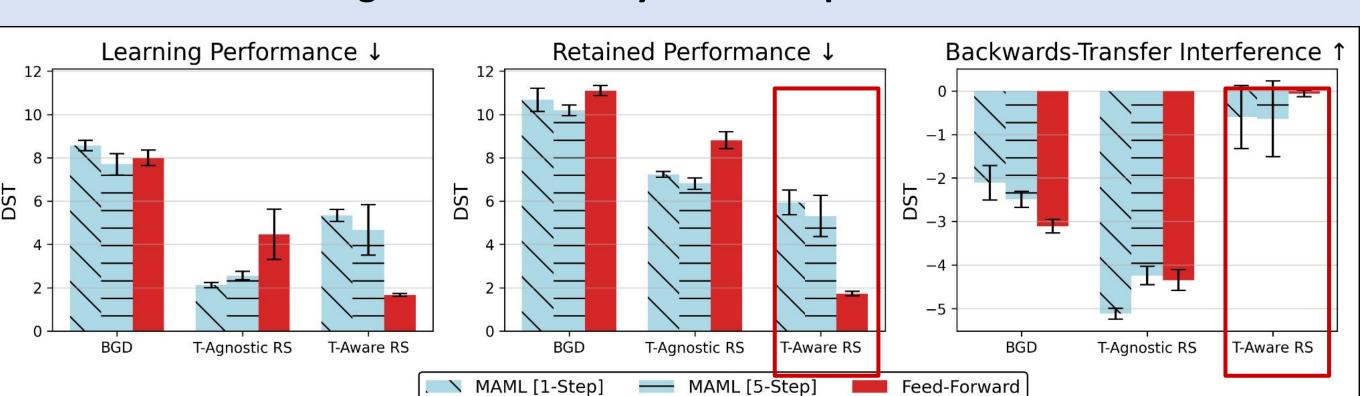
Experiments



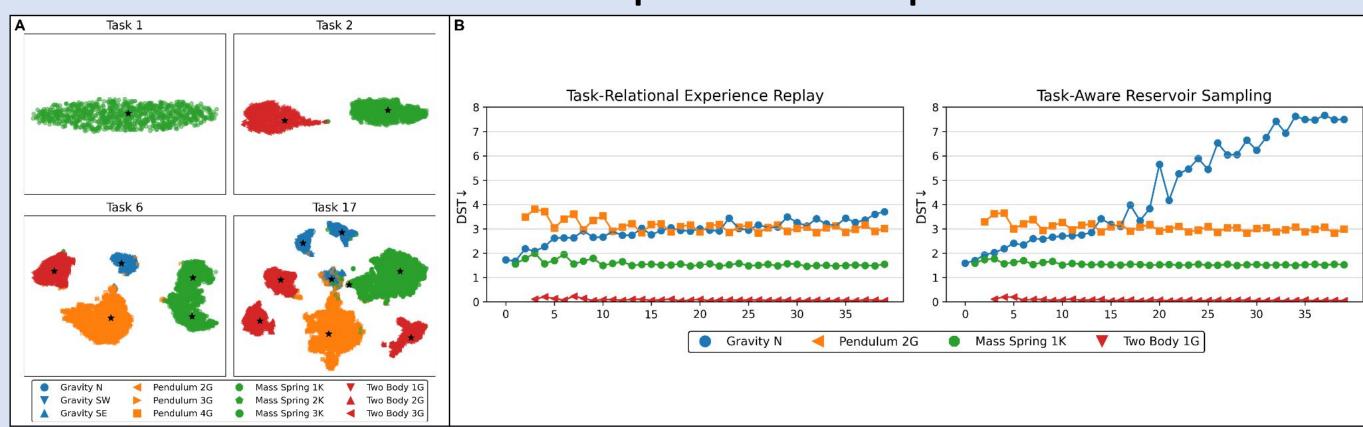
Naive meta-models catastrophically forget



Heterogeneous latent dynamics require meta-models



Bi-level meta-optimization is important



GMM task identification is robust to re-appearing tasks