Leveraging Sub-optimal Data for Human-in-the-Loop Reinforcement Learning

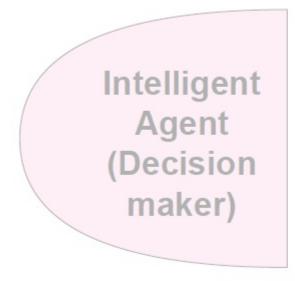
Calarina Muslimani

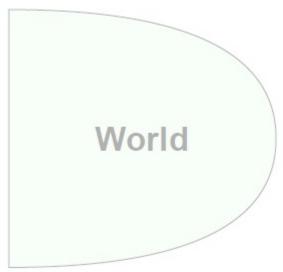
Taylor

Reinforcement learning

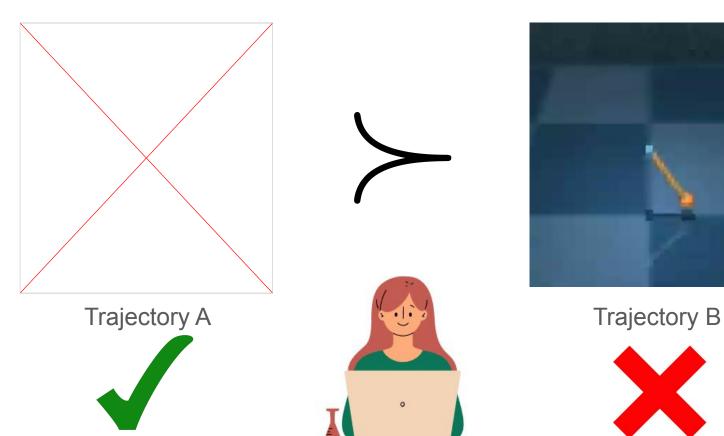
Action Intelligent Agent Reward World (Decision maker) **Observation**

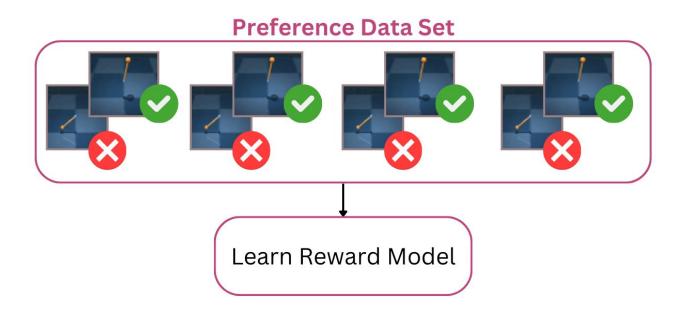
Where do rewards come from? Difficult to design in practice!



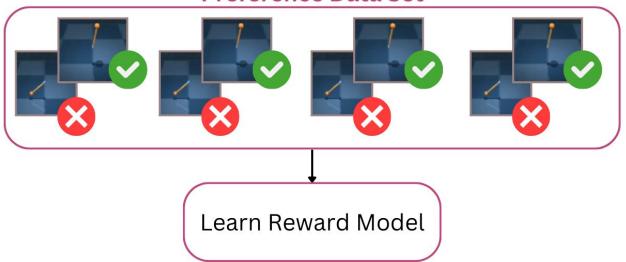


We can learn reward functions from human feedback!





Preference Data Set



Soft Max to get Probabilities

$$P_{\theta}(T^A > T^B) = \frac{\exp\left(\sum_t r_{\theta}(s_t^A, a_t^A)\right)}{\exp\left(\sum_t r_{\theta}(s_t^A, a_t^A)\right) + \exp\left(\sum_t r_{\theta}(s_t^B, a_t^B)\right)}$$

Plug into Standard Binary Cross Entropy

$$L^{CE}(\theta, D) = -\mathbb{E}_{(T^A, T^B, y) \sim D} \left[y \log P_{\theta}(T^A > T^B) + (1 - y) \log P_{\theta}(T^B > T^A) \right]$$

Preference Data Set

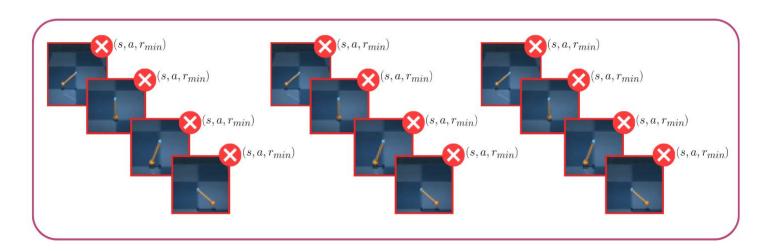
Plug into Standard Binary Cross Entropy

$$L^{CE}(\theta, D) = -\mathbb{E}_{(T^A, T^B, y) \sim D} \left[y \log P_{\theta}(T^A > T^B) + (1 - y) \log P_{\theta}(T^B > T^A) \right]$$

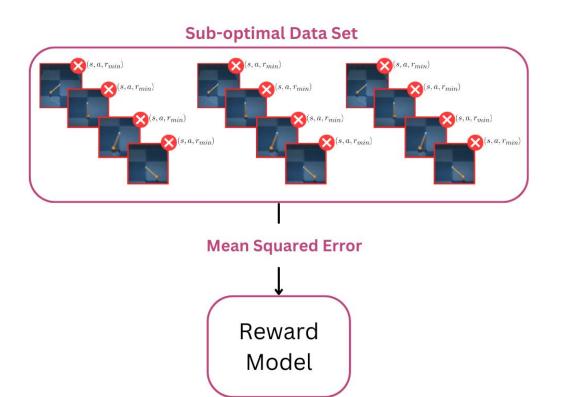
Can we leverage sub-optimal transitions to improve feedback efficiency of human-in-the-loop RL?

Propose Sub-Optimal Data Pretraining—SDP

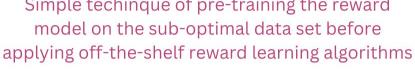
Leverages sub-optimal state, action transitions by *pseduolabeling all transitions* with *minimum* possible environment *reward*



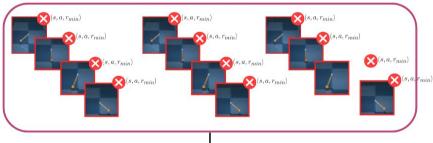
Simple techinque of pre-training the reward model on the sub-optimal data set before applying off-the-shelf reward learning algorithms



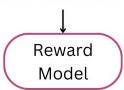
Simple techinque of pre-training the reward model on the sub-optimal data set before



We obtain large amounts of labeled data for "free"!

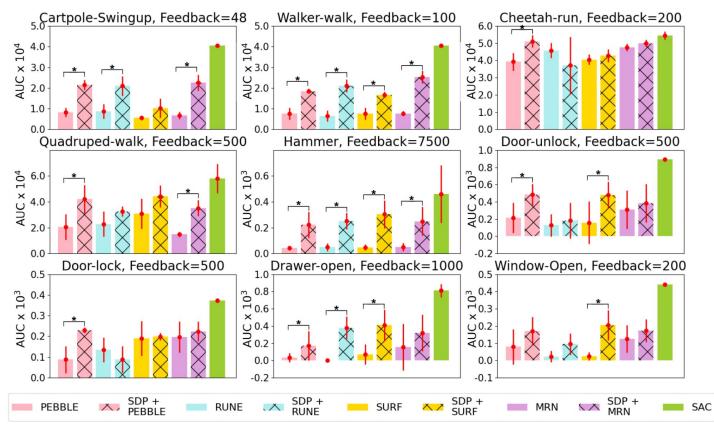


The reward model learns to associate low-quality transitions with a low reward!



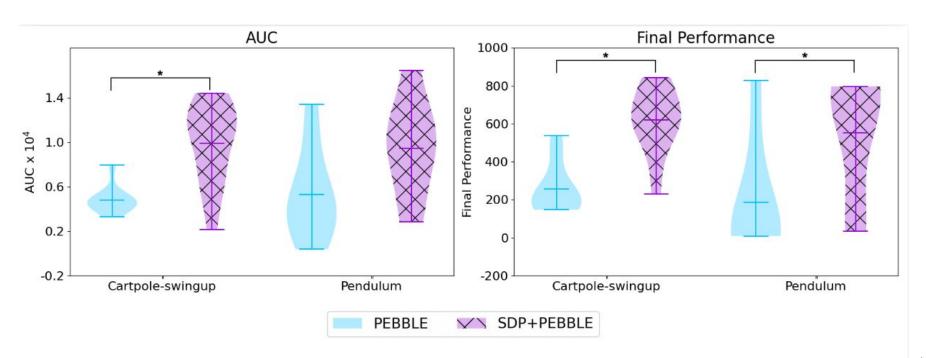
Human will not need to provide preferences for low-quality behaviors!

SDP significantly improved performance in over 63% of experiments



SDP can work with real humans!

Ethics-approved user study of 16 participants (CS and non-CS background)



Key Takeaways

- SDP is a simple approach that makes use of sub-optimal data to reduce the amount of human feedback needed in human-in-the-loop RL
- 2. Effective in simulated robotic environments with both real and simulated humans!