

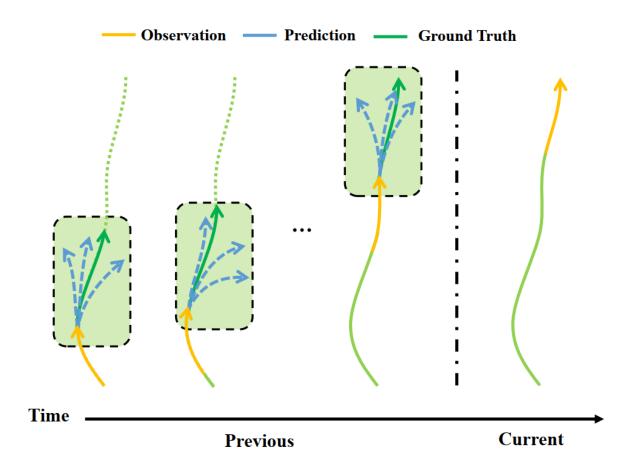
Interactive Adjustment for Human Trajectory Prediction with Individual Feedback

Jianhua Sun*, Yuxuan Li*, Liang Chai, Cewu Lu

Shanghai Jiao Tong University

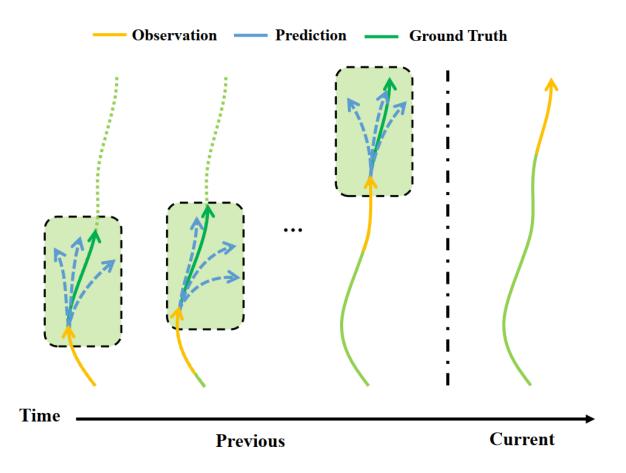
* and ** denote equal contribution

Background


• Human Trajectory Prediction

- The problem of predicting the target's future movements given the observation.
- Have been studied from numerous aspects while achieving remarkable progress.
 - Multi-modal prediction
 - Human social interaction
 - Scene context restrictions
 - ...

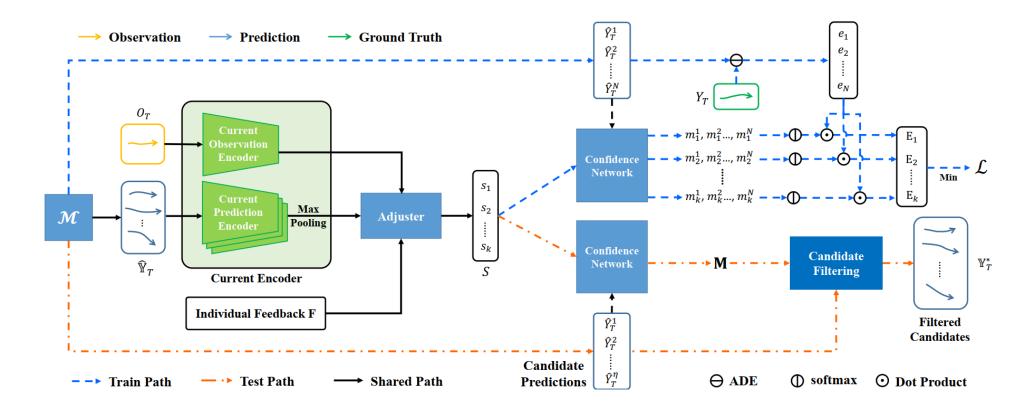
Motivation


• Human Trajectory Prediction

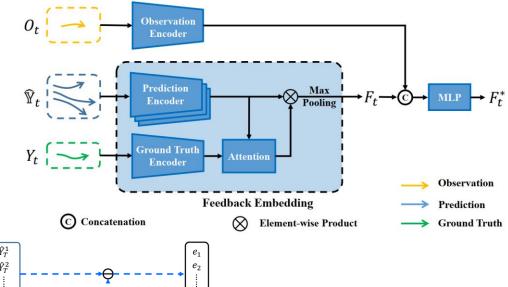
- Given the sequential nature:
 - An agent's presence in a scene is typically a long sequence
 - A series of consecutive predictions is performed over time
- Another essential information:
 - Individual Feedback.

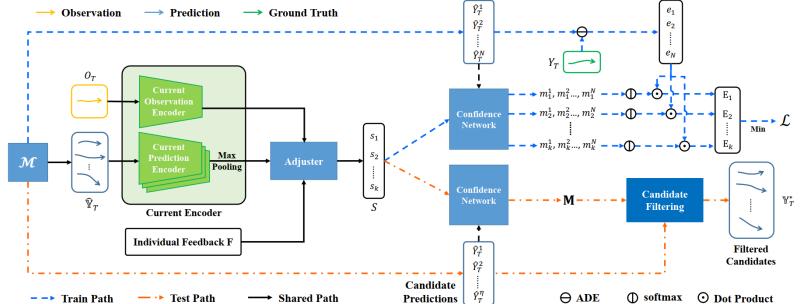
Motivation

- Human Trajectory Prediction
 - Continuous predictions on the agent
 - Previous predictions can be verified by the agent's ground-truth trajectory
 - Available through the progression of time
 - Individual Feedback from verification

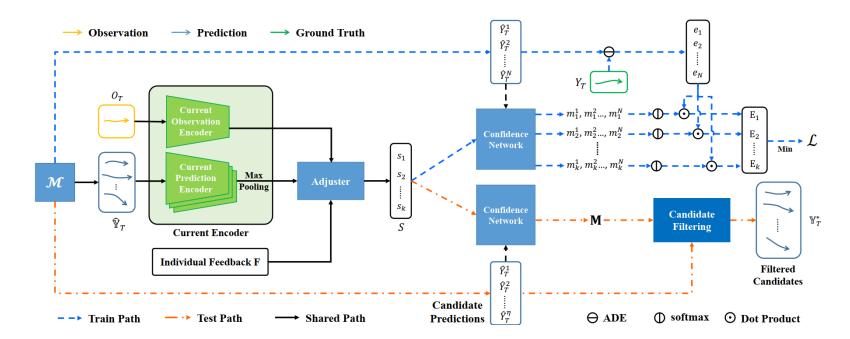


Individual Feedback


- In the conventional trajectory prediction setting, a prediction model \mathcal{M} takes an observation sequence on an agent with length τ_{obs} as input, and outputs predicted trajectories with length τ_{pred} .
- When the agent has been present in the scene for more than $\tau_{obs} + \tau_{pred}$ timesteps, there exists predictions whose qualities can be verified by the corresponding actual trajectories of the agent.

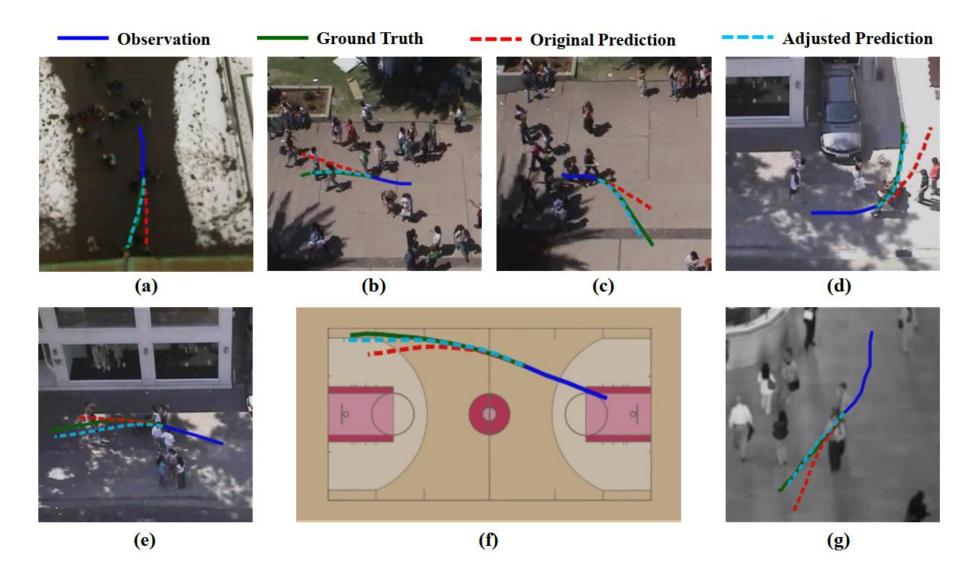

- In order to effectively utilize the individual feedback, we design the Interactive Adjustment Network (IAN).
- Two major considerations during the design
 - The feedback information cannot be directly integrated into the prediction model and trained end-toend. This means that the network should developed as an external module.
 - As an external module, the network cannot directly be aware of the restraints given by the prediction model when adjusting. This prevents the network from directly outputting trajectories adjusted via individual feedback.

- Based on the two considerations, we design the network as an external module that
 - First embeds the individual feedback
 - Then use the feedback embeddings to produce proposals and adjust the predictions of the prediction model



- In the pipeline
 - An illustration of the feedback embedding network is shown on the right.
 - The feedback embeddings for each agent are aggregated together as the individual feedback F

- In the pipeline (cont'd)
 - The individual feedback **F** is sent through the adjuster along with the current observation and predictions.
 - The adjuster produces a series of proposals, which are used to filter the candidate predictions (generated by the prediction model) via a greedy algorithm



Experiments

- We conducted experiments by adopting IAN to six representative prediction models across three widely used benchmarks, and use ADE/FDE as metrics
- Substantial performance improvements are achieved for all the prediction models on three benchmarks after applying IAN to model the individual feedback information

ID	Method	SGAN	SGCN	LB-EBM	GroupNet	TUTR	ST
	Baseline	0.22 / 0.39	0.28 / 0.48	0.20 / 0.36	0.21 / 0.35	0.23 / 0.39	0.20 / 0.30
1	w/ IAN	0.20 / 0.34	0.26 / 0.44	0.18 / 0.31	0.19 / 0.30	0.22 / 0.36	0.19 / 0.29
	Impr.	9.1% / 12.8%	7.1% / 8.3%	10.0% / 13.9%	9.5% / 14.3%	4.3% / 7.7%	5.0% / 3.3%
	Baseline	4.47 / 7.40	4.10 / 6.51	3.19 / 5.24	2.65 / 4.05	2.81 / 4.40	3.05 / 4.60
2	w/ IAN	4.28 / 7.04	3.79 / 5.94	2.98 / 4.72	2.56 / 3.83	2.72 / 4.25	2.96 / 4.45
	Impr.	4.3% / 4.9%	7.6% / 8.8%	6.6% / 9.9%	3.4% / 5.4%	3.2% / 3.4%	3.0% / 3.3%
	Baseline	1.53 / 2.24	1.56 / 2.46	1.40 / 2.08	1.17 / 1.64	1.23 / 1.93	1.24 / 1.60
3	w/ IAN	1.47 / 2.11	1.44 / 2.19	1.34 / 1.94	1.13 / 1.56	1.19 / 1.84	1.20 / 1.55
	Impr.	3.9% / 5.8%	7.7% / 11.0%	4.3% / 6.7%	3.4% / 4.9%	3.3% / 4.7%	3.2% / 3.1%

Qualitative Analysis

Thank you for watching!

Jianhua Sun*, Yuxuan Li*, Liang Chai, Cewu Lu

{gothic, yuxuan_li, chailiang1234, lucewu}@sjtu.edu.cn