

EqNIO: Subequivariant Neural Inertial Odometry

Royina Karegoudra Jayanth*

Yinshuang Xu*

Ziyun Wang

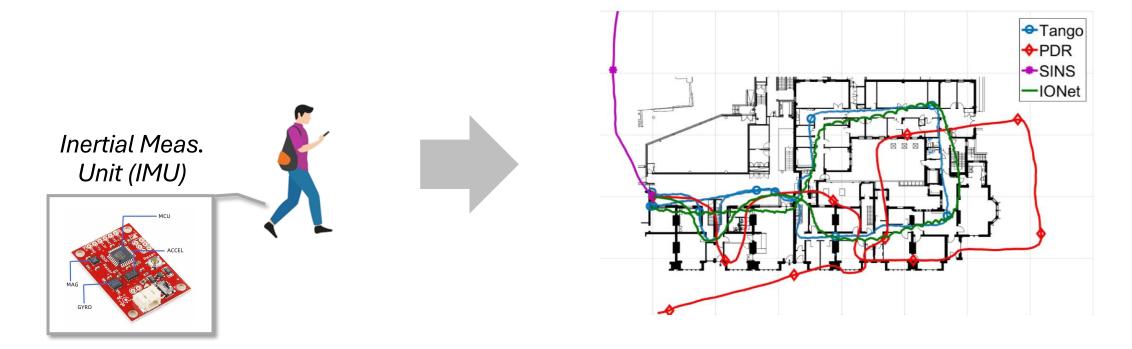
Evangelos Chatzipantazis

Kostas Daniilidis†

Daniel Gehrig†

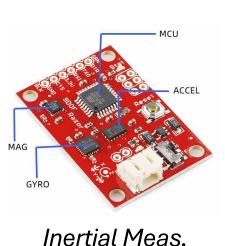
Inertial Odometry (IO)

• **Goal:** Odometry from raw accelerometer and gyroscope measurements from an IMU.



What does an IMU measure?

• Raw IMU measurements are related to true linear accelerations and angular velocities as follows:



Unit (IMU)

$$\widetilde{\omega}_i = \overline{(\overline{\omega}_i)} + \overline{(b^g_i)} + \overline{(\eta^g_i)}$$

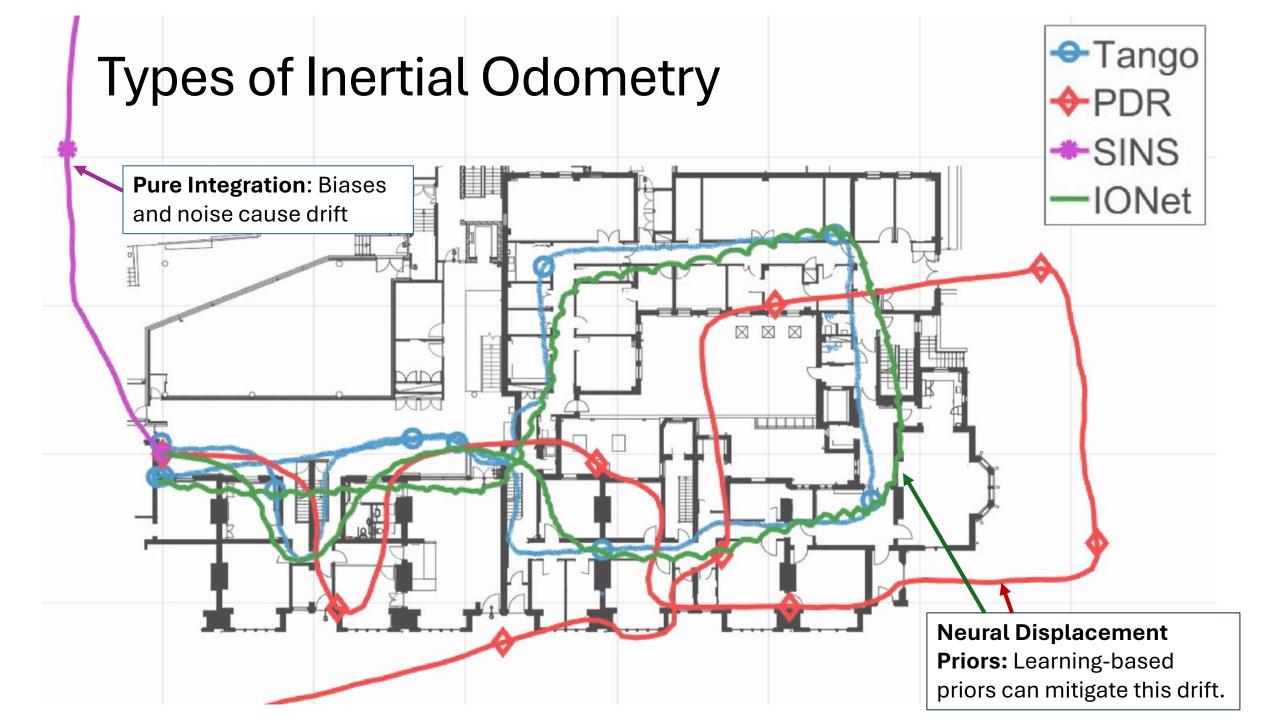
Raw IMU meas.

True meas. IMU Biases Noises

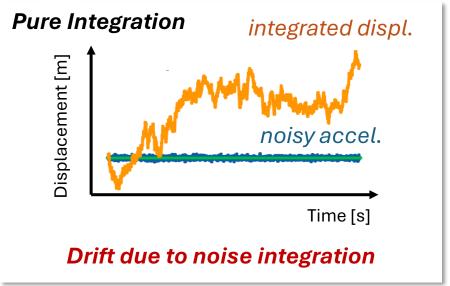
$$\tilde{a}_i = \bar{a}_i - \begin{bmatrix} w R_i^T g + b^a_i + \eta^a_i \end{bmatrix}$$

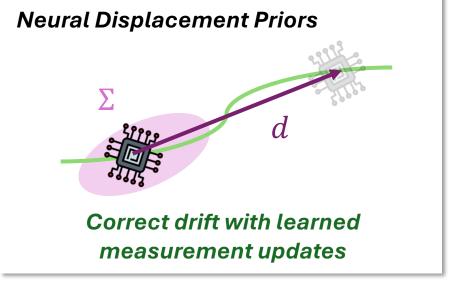
Transformation from body frame *b* to world frame *w*

Gravity vector pointing downwards in world frame



Types of Inertial Odometry





What is a Neural Displacement Prior?

From set of measurements

$$\omega_i = (g_R)(\widetilde{\omega}_i - b^g)$$

Orientation wrt gravity

aligned frame

$$a_i = {}^g_b R_i (\tilde{a}_i - b^a)$$

Gravity aligned frame ${}_{b}^{g}R_{i}$

gravity direction

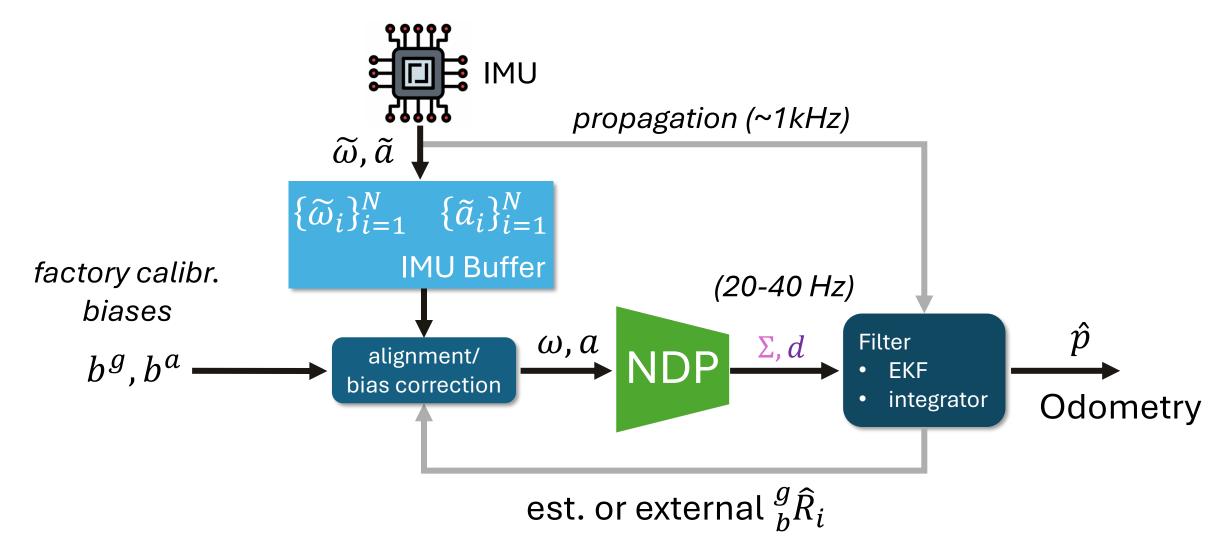
• Learn to regress displacement d and covariance Σ with neural network:

Factory calibration biases

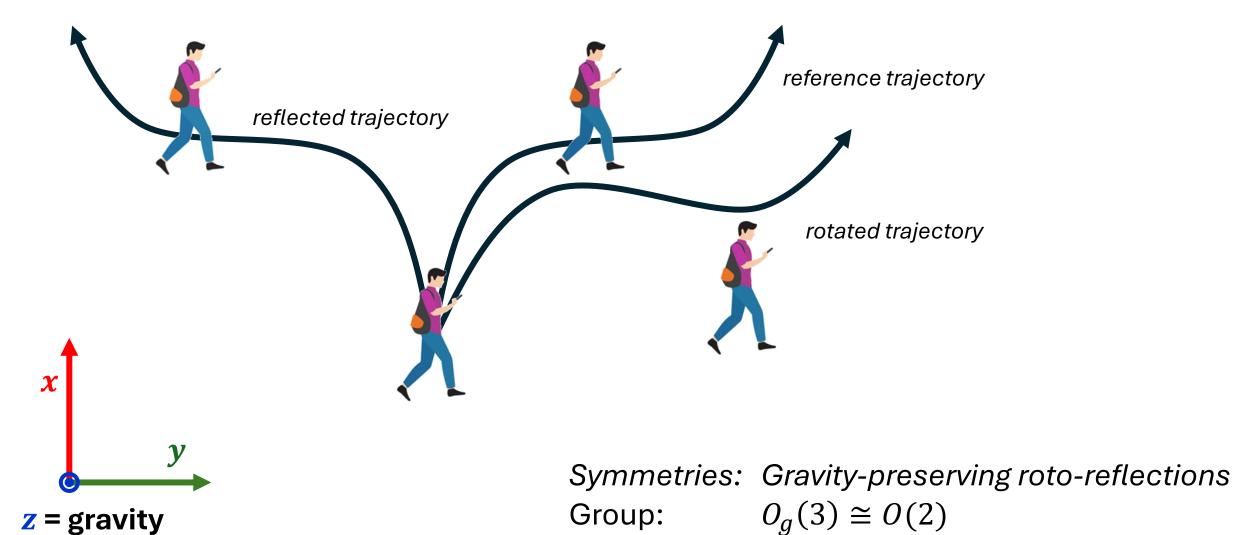
$$d, \Sigma = \Phi) (\{\omega_i\}_{i=1}^N, \{a_i\}_{i=1}^N)$$

Neural Displacement Prior (NDP)

Neural Inertial Odometry

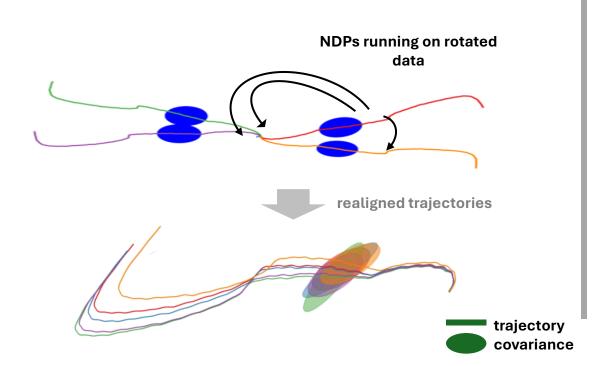


Symmetry in Neural Inertial Odometry



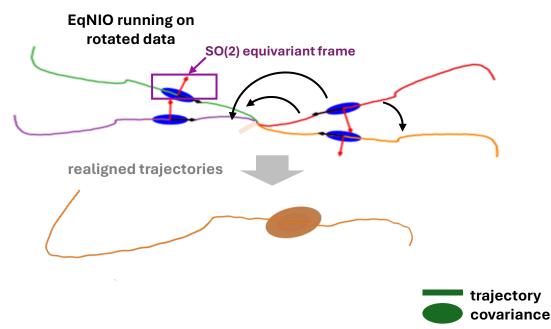
Symmetry in Neural Inertial Odometry

Prior Work (RoNIN, TLIO...)

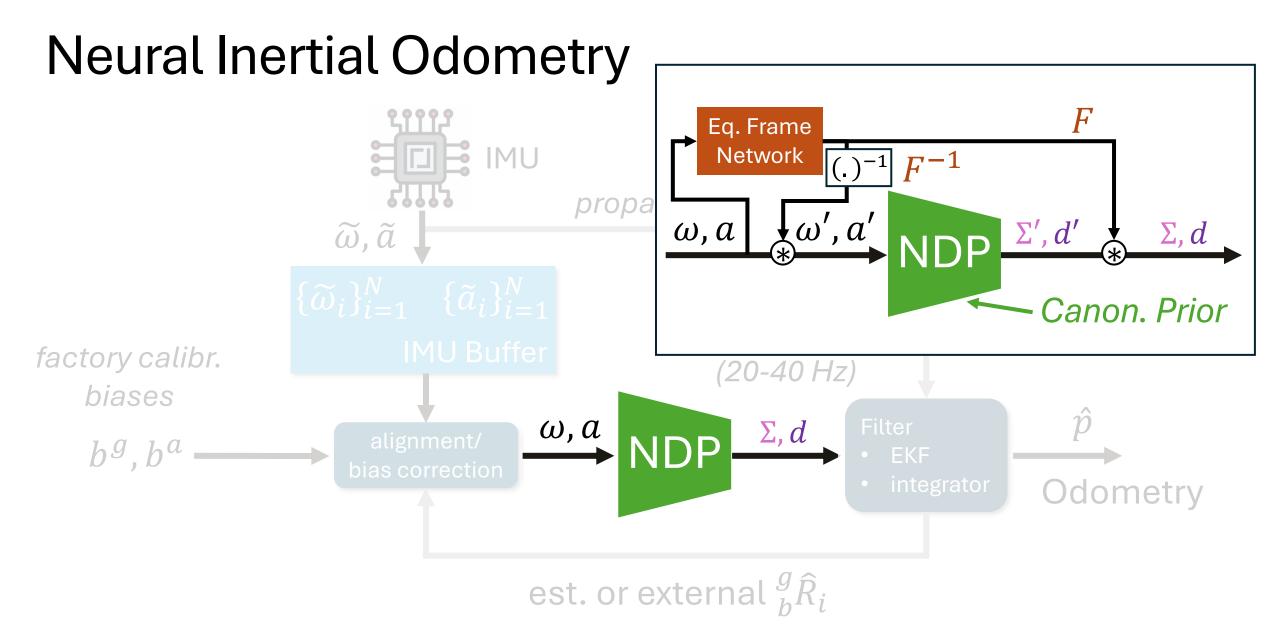


Inconsistent trajectories, despite data augmentation

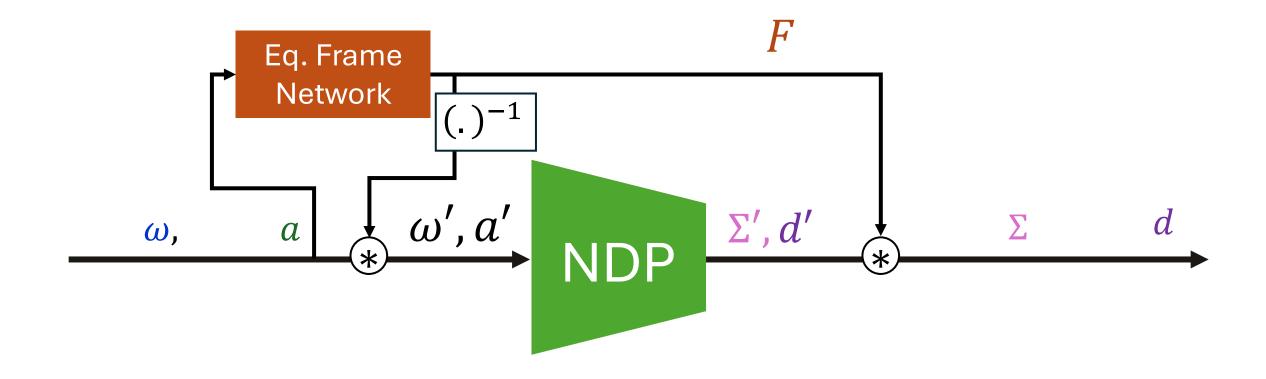
EqNIO (this work)



Consistent trajectories thanks to equivariant processing

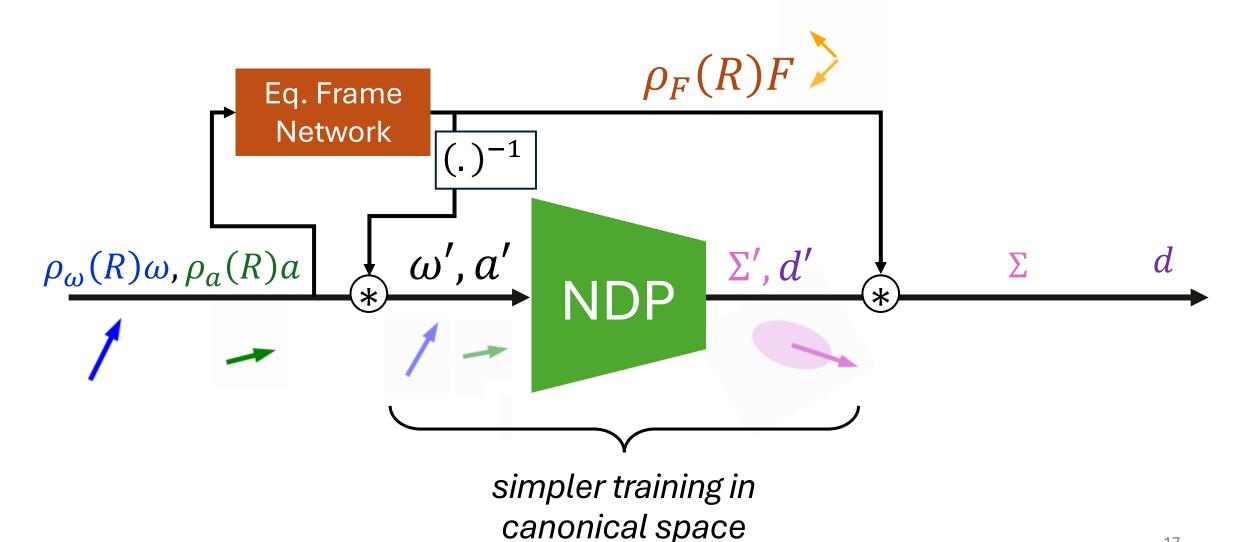


Equivariance of EqNIO



Equivariance of EqNIO

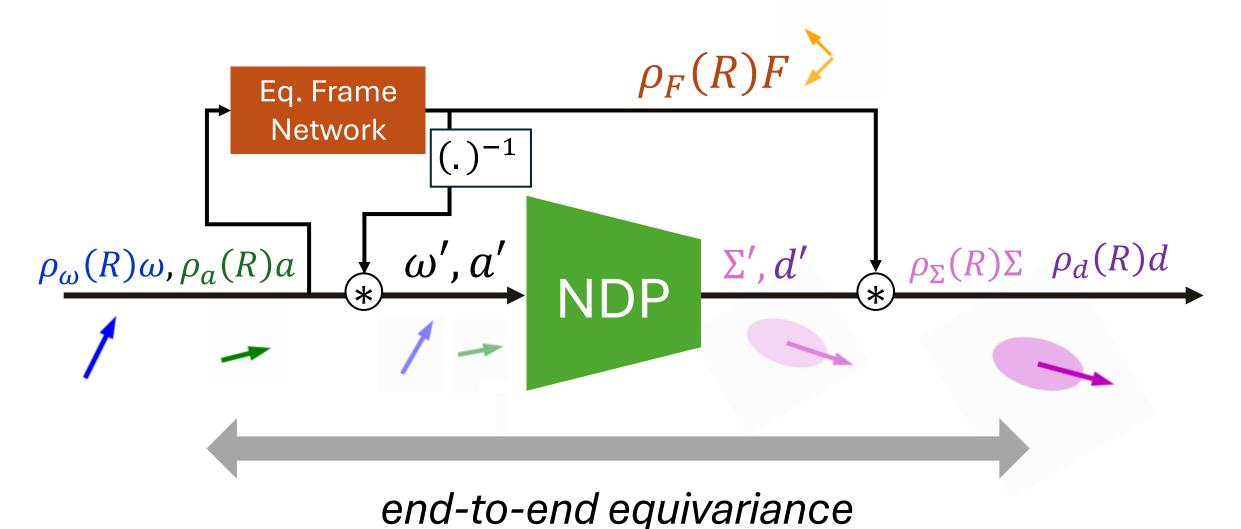
Yaw Symmetry SO(2)



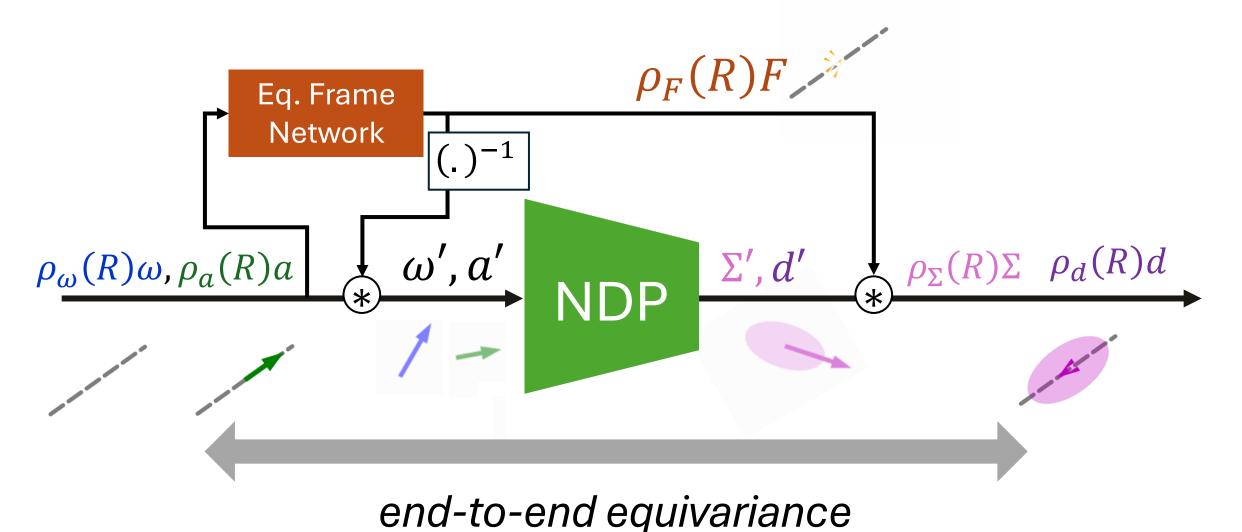
17

Equivariance of EqNIO

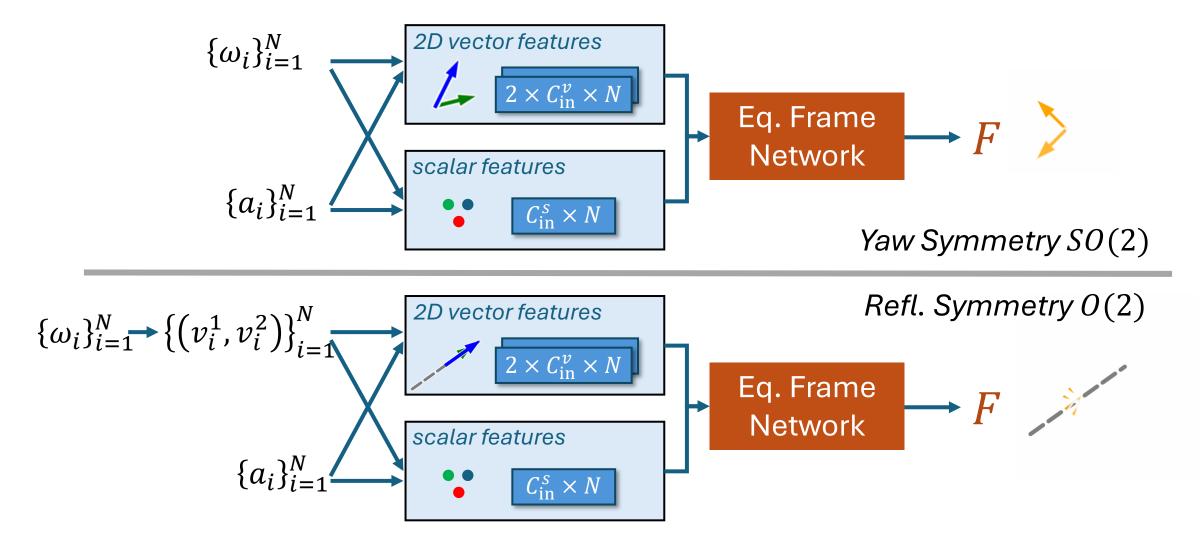
Yaw Symmetry SO(2)



Equivariance of EqNIO Reflection Symmetry 0(2)



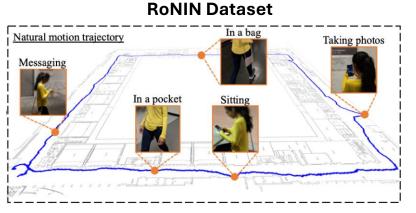
Building the Equivariant Frame

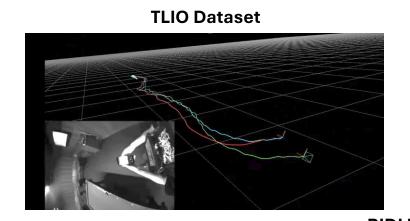


Experiments

Extensive evaluation on two NDPs (RoNIN, TLIO), and 5 datasets

Consistent reduction of absolute and rel. trajectory error (ATE/RTE)

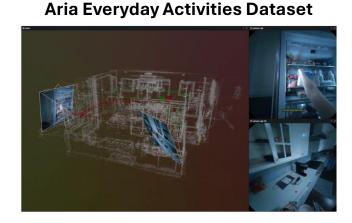


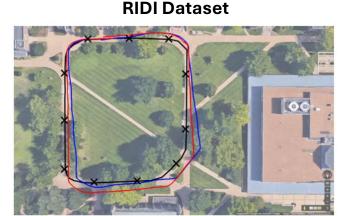


OXIOD Dataset

30
20
E10
Pseudo Ground Truth (Tango)
DeeplO
-20
-10
0
10
20
30
East(m)

40
50
60
70





Application to RONIN

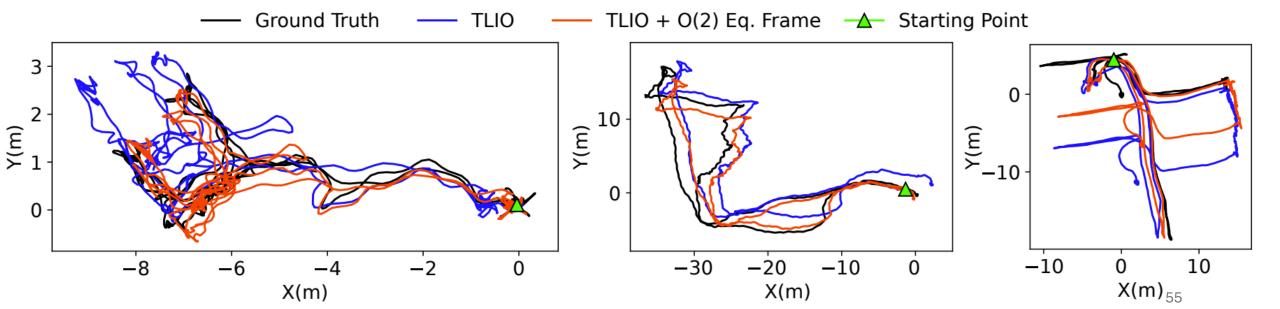
• Adding our **EqNIO** to RoNIN consistently improves results!

	RONIN-U		RONIN-S		RIDI-T		RIDI-C		OxIOD	
Model (RONIN)	ATE*	RTE*	ATE* (m)	RTE* (m)	ATE* (m)	RTE*	ATE* (m)	RTE* (m)	ATE* (m)	RTE* (m)
+ 100% data	5.14	4.37	3.54	2.67	1.63	1.91	1.67	1.62	3.46	4.39
+ 50% data †	5.57	4.38	-	-	1.19	1.75	-	-	3.52	4.42
+ 50% data + J †	5.02	4.23	-	-	1.13	1.65	-	-	3.59	4.43
+ 50% data + TTT †	5.05	4.14	-	-	1.04	1.53	-	-	2.92	3.67
+ 50% data + J +TTT †	5.07	4.17	-	-	1.03	1.51	-	-	2.96	3.74
+ 50% data + $SO(2)$ Eq. Frame	5.18	4.35	3.67	2.72	0.86	1.59	0.63	1.39	1.22	2.39
+ 50% data + $O(2)$ Eq. Frame	4.42	3.95	3.32	2.66	0.82	1.52	0.70	1.41	1.28	2.10
Naive Double Integration (NDI)	458.06	117.06	675.21	1.6948	31.06	37.53	32.01	38.04	1941.41	848.55

Application to TLIO

Adding our EqNIO to TLIO consistently improves results!

* Indicates NN	,	TLIO Dat	taset			Aria Dataset						
Model	MSE*	ATE	ATE*	RTE	RTE*	AYE	MSE*	ATE	ATE*	RTE	RTE*	AYE
	$(10^{-2}m^2)$	(m)	(m)	(m)	(m)	(deg)	$(10^{-2}m^2)$	(m)	(m)	(m)	(m)	(deg)
TLIO	3.333	1.722	3.079	0.521	0.542	2.366	15.248	1.969	4.560	0.834	0.977	2.309
+ rot. aug.	3.242	1.812	3.722	0.500	0.551	2.376	5.322	1.285	2.103	0.464	0.521	2.073
+ SO(2) Eq. Frame	3.194	1.480	2.401	0.490	0.501	2.428	2.457	1.178	1.864	0.449	0.484	2.084
+ O(2) Eq. Frame	2.982	1.433	2.382	0.458	0.479	2.389	2.304	1.118	1.850	0.416	0.465	2.059



Conclusion

- We introduce a robust and generalizable canonicalization scheme for NDPs.
- We formalize the group actions of gravity-preserving rotoreflection on IMU measurements.
- By reducing the data variability seen by neural networks these frames boost the generalization of existing networks and enforce exact equivariance.
- This work paves the way for robust, and low-drift odometry running on edge devices.

