ICLR 2025, Spotlight

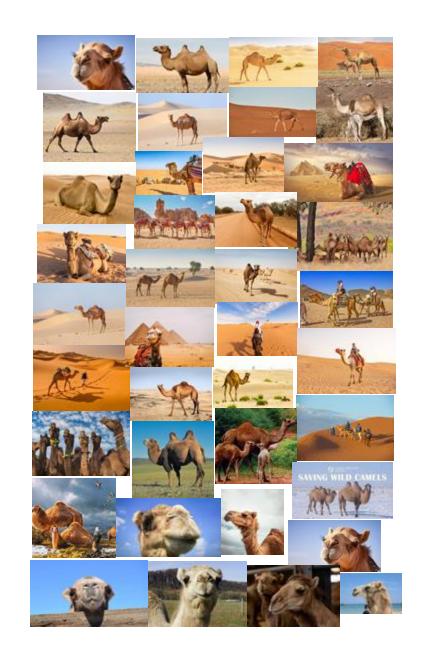
Varun Mulchandani

vmmulcha@ncsu.edu

Jung-Eun Kim

jung-eun.kim@ncsu.edu

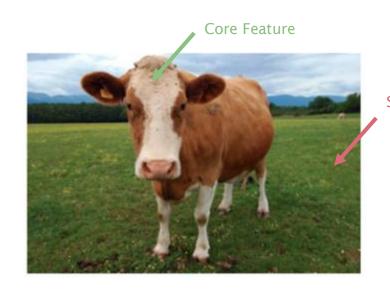
Cow Training Images



Camel Training Images

Spurious Correlations

During train time



Spurious Feature

W * Green Background = Cow

Spurious Correlations

During test time

W * Green Background = Cow

State of Existing Solutions

- Existing study settings where:
 - Strength(spurious signal) >> Strength(core, invariant signal).
 - E.g.: 97% of samples of a class have the spurious feature.
 - Easy to detect sample-wise presence Identifiable.

• But we study both: Unidentifiable and Identifiable settings.

CelebA Gender Classification Train Set Setup

Male Female

With glasses

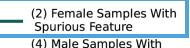
No

glasses

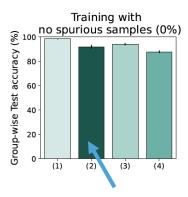
No glasses

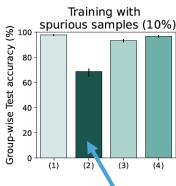
When Spurious Signals are Weak

(3) Male Samples Without Spurious Feature



Spurious Feature



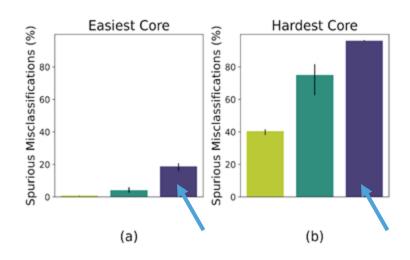


Spurious Correlations are still relied upon.

• However, we show that spurious features are unidentifiable.

How to Overcome Spurious Correlations in Unidentifiable Settings?

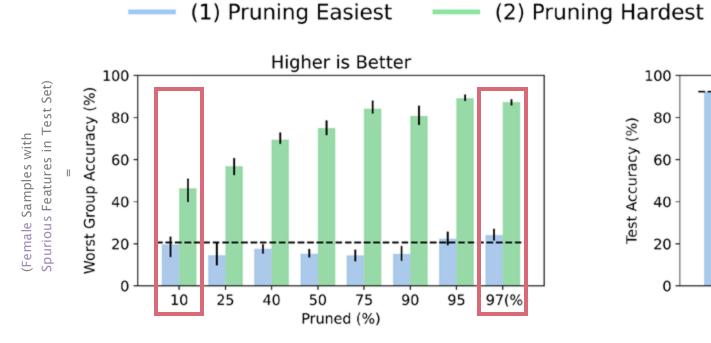
Sample-Wise Contribution to Spurious Correlations



- Easiest Core + Spurious Feature:
 Almost no spurious misclassifications.
- Hardest Core + Spurious Feature:
 Almost 100% spurious misclassifications.

Samples with Hard Core + Spurious Features are Primary Contributors to SC Reliance

CelebA Gender Classification

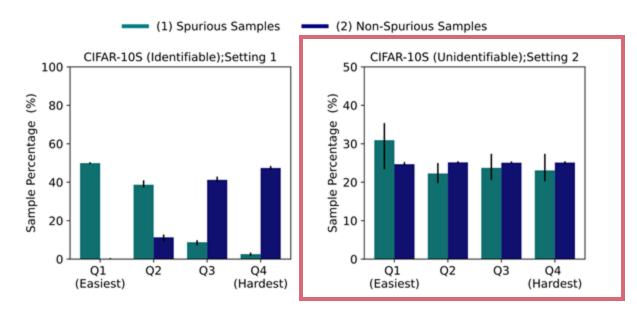


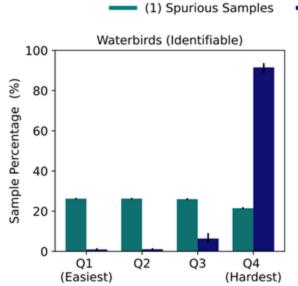
Higher is Better 100 80 Test Accuracy (%) 60 -20 0 75 97(%) 25 40 50 90 95 10 Pruned (%)

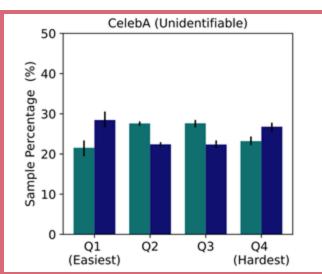
(3) Unpruned Dataset

Pruned (%) represents number of samples with spurious features removed from train data.

Identifiable vs. Unidentifiable Settings



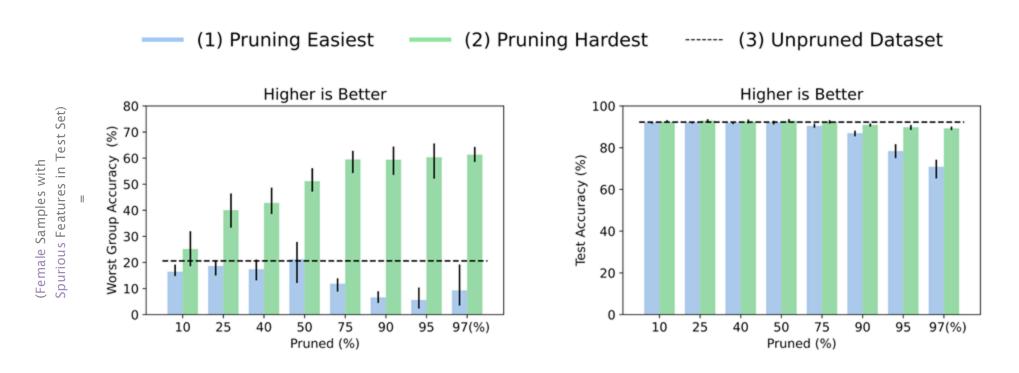




(2) Non-Spurious Samples

- In an unidentifiable setting,
 you can just prune the hardest samples.
- In an identifiable setting,
 just prune the hardest samples w/ spurious features.

Unidentifiable setting - CelebA Gender Classification



Identifiable setting

	Waterbirds (%)		MultiNLI (%)		Group Labels	
Method	Worst%	Mean%	Worst %	Mean%	Train	Val
ERM	74.81 (0.7)	98.10 (0.1)	65.9 (0.3)	82.8 (0.1)	Х	Х
CnC (Zhang et al. 2022)	88.5 (0.3)	90.9 (0.1)	-	-	X	/
JTT (Liu et al., 2021)	86.7	93.3	72.6	78.6	X	✓
gDRO (Sagawa et al., 2020a)	86.0	93.2	77.7	81.4	1	1
DFR ^{Tr} (Kirichenko et al., 2023)	90.2 (0.8)	97.0 (0.3)	71.5 (0.6)	82.5 (0.2)	✓	/
PDE (Deng et al., 2023)	90.3 (0.3)	92.4 (0.8)	-	-	/	/
Ours	90.93 (0.58)	92.48 (0.72)	75.88 (1.62)	81.07 (0.25)	1	✓

Our Core Insight

This paper discovers that spurious correlations are learned from a very small fraction of the samples containing spurious features.

They can be removed from the dataset even if one cannot determine/infer what spurious features/correlations are present in the dataset, to mitigate spurious correlations.

Thank you