

Spread Preference Annotation: Direct Preference Judgment for Efficient LLM Alignment

Dongyoung Kim¹, Kimin Kim¹, Jinwoo Shin¹, Jaehyung Kim²

¹KAIST AI, ²Yonsei University

Summary

- ☐ Why? Human preference labeling is costly. Existing methods depend on large aligned LLMs or reward models, which are both data-hungry and noise-prone
- ☐ How? SPA leverages logits-based preference judgment and self-generated data, combined with noise-aware refinement—no additional training models required
- □ What? SPA achieves +16.4% AlpacaEval win rate using only 3.3% of gold labels. Outperforms strong baselines and even works with zero human-labeled data

Introduction

☐ Challenge: Aligning LLMs with Human Preferences

> Aligning LLMs with user intent is crucial but requires costly, large-scale human preference data.

☐ Limitations of Existing Approaches

- >> LLM-as-judge and reward models either require strong base models or large labeled datasets
- $\succ \mbox{LLM-as-judge}$ is Al feedback and differs from actual human preferences

☐ Our Solution: Spread Preference Annotation (SPA)

- > Leveraging human prior knowledge within the small (seed) data a and progressively improving the alignment of LLM
- > Utilize implicit reward from LLM to explicitly extract the model's inherent preference
- \succ Improving learning performance by automatically processing noise during the learning process

$$p_{\theta}(y_w \succ y_l|x) = \sigma \left(\beta \log \frac{\pi_{\theta}(y_w|x)}{\pi_{\text{ref}}(y_w|x)} - \beta \log \frac{\pi_{\theta}(y_l|x)}{\pi_{\text{ref}}(y_l|x)}\right)$$

Method: SPA

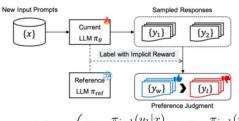
☐ Step 0: Initialization

> Train the initial model using DPO on seed dataset

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}) = \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[-\log p_{\theta}(y_w \succ y_l | x) \right].$$

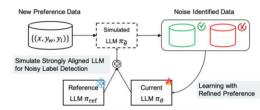
☐ Step 1: Preference Data Generation

> Sample new responses for prompts and use the model's logits to infer preference labels via implicit reward comparison



$$p_{i-1}(y_1 \succ y_2 | x) = \sigma \left(\beta \log \frac{\pi_{i-1}(y_1 | x)}{\pi_{\text{init}}(y_1 | x)} - \beta \log \frac{\pi_{i-1}(y_2 | x)}{\pi_{\text{init}}(y_2 | x)} \right)$$

☐ Step 2: Self-Refined Preference Learning



> If the internal preference of the model being trained does not exceed a certain threshold, it is treated as noise

$$z_{\theta} = 1$$
 if $p_{\theta}(y_w \succ y_l | x) < \tau$ else $z_{\theta} = 0$,

> Noise labels are given low weight in preference learning

$$\mathcal{L}_{\rm rf}(\pi_{\theta}) = \mathbb{E}_{(x,y_w,y_l) \sim \mathcal{D}_i} \left[-\left((1 - \alpha * z_{\theta}) \log p_{\theta}(y_w \succ y_l | x) + \alpha * z_{\theta} \log p_{\theta}(y_l \succ y_w | x) \right) \right],$$

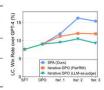
 \succ More strong aligned logit is obtained from linear combination of the logits of π_θ and π_{ref} , and noise is detected based on this

$$h_{\widetilde{\theta}}(x, y_{1:t-1}) = (1 + \lambda) * h_{\theta}(x, y_{1:t-1}) - \lambda * h_{\text{ref}}(x, y_{1:t-1}),$$

Experiment Result

- ☐ Results with 3.3% Gold Labels
- ➤ We train Mistral-7b-01v on Ultrafeedback datasets

Models		Alpaca	MT-Bench	
	Gold Label (%)	Len-control. Win Rate (%)	Win Rate vs. GPT-4 (%)	Avg. Score (0-10)
Mistral-7B-v0.1		0.17	0.50	3.25
Zephyr-7b- β	100	11.75	10.03	6.87
SFT		7.58	4.72	6.34
DPO	3.3	9.03	7.68	6.81
SPA (Ours)	3.3	15.39	21.13	6.94



☐ Effect of Seed Size on Performance (AlpacaEval 2.0)

	Used Ground-truth Preference Data			
Methods	0.8%	1.7%	3.3%	10%
DPO: LC Win Rate (%)	7.85	7.68	9.03	11.37
DPO: Win Rate (%)	5.53	5.49	7.68	9.32
SPA: LC Win Rate (%)	10.36	12.36	16.23	18.52
SPA: Win Rate (%)	11.34	13.72	19.94	23.79

Limitation & Future Work

- Limitation
- > There is a large length bias, may be many other biases.
- > Vulnerable to error accumulation
- □ Enhanced noise handling
- > A methodology that separates and reduces bias at the model and dataset level, such as co-teaching, would be effective.
- > When using implicit rewards, such as offline RL methodologies, strong regularization can be applied.
- ☐ Research advances using implicit reward
- ➤ Methodologies that utilize implicit rewards have shown experimentally superior performance in various fields.
- Self Improving: Bootstrapping Language Models with DPO Implicit Rewards (ICLR)
- Process Reward Modeling :Process Reinforcement through Implicit Rewards