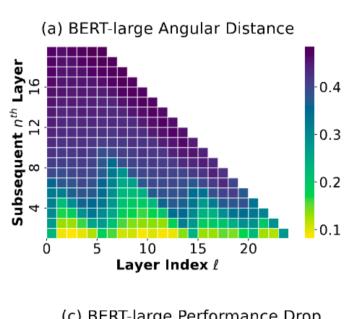
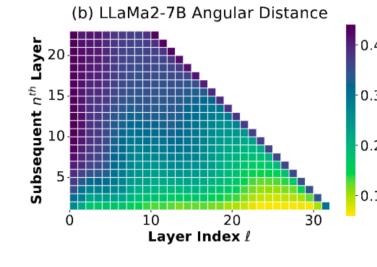
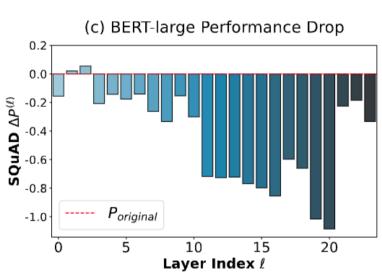
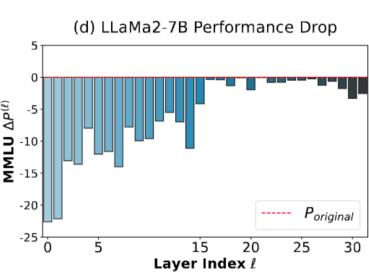


Mix-LN: Unleashing the Power of Deeper Layers by Combining Pre-LN and Post-LN

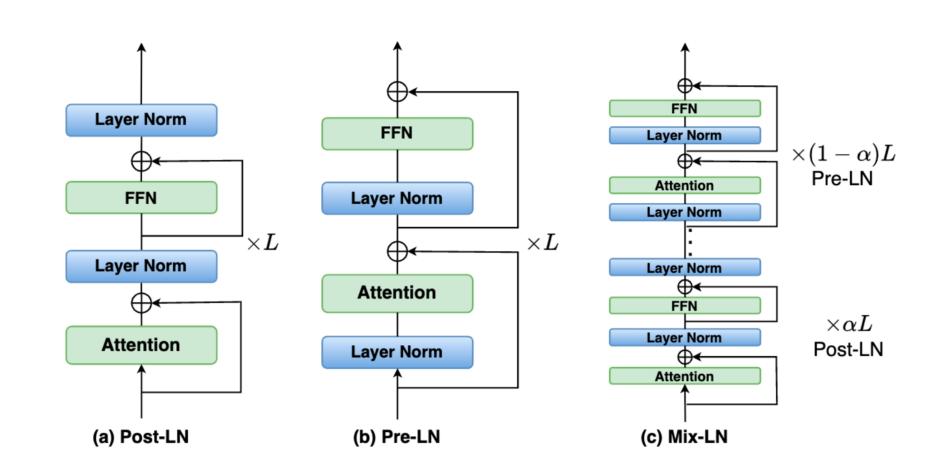

Pengxiang Li^{1*}, Lu Yin^{2*}, Shiwei Liu^{3†}


¹Dalian University of Technology, ²University of Surrey, ³University of Oxford




Layer Pruning Analysis

Which Layers Really Matter? 😌 A Pruning-Based Reality Check



 $\partial LN(x)$

- (a-b) Angular distance matrices show early layers are redundant
- (c-d) Removing any deep layer hurts much more

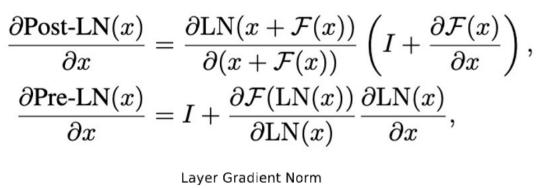
Method

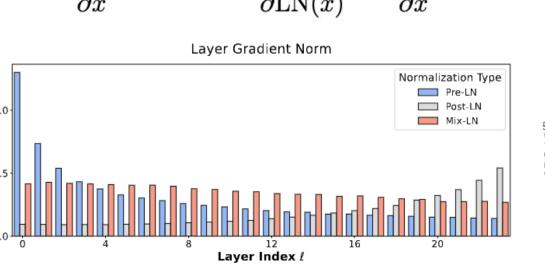
We propose Mix-LN to makes deep layers indispensable.

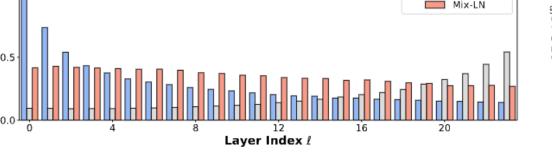
- **☑** Combines Pre-LN and Post-LN within the same model
- **☑** Balances gradients and boosts deep-layer learning
- Improves representation diversity and training efficiency
- Simple, effective, and easy to integrate

Experiments

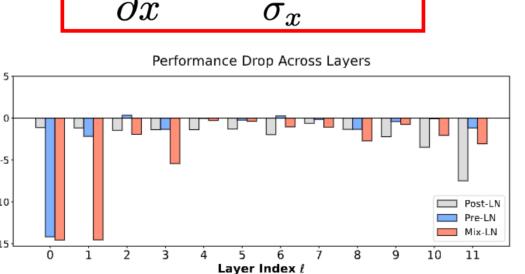
Perplexity (\downarrow) comparison of various layer normalization methods


Training Tokens	LLaMA-71M 1.1B	LLaMA-130M 2.2B	LLaMA-250M 3.9B	LLaMA-1B 5B
Post-LN	35.18	26.95	1409.09	1411.54
DeepNorm	34.87	27.17	22.77	1410.94
Pre-LN	34.77	26.78	21.92	18.65
Mix-LN	33.12	26.07	21.39	18.18


Fine-tuning performance (个) of LLaMA with various normalizations

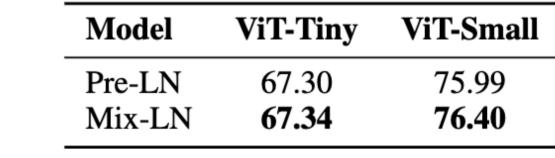

Method	MMLU	BoolQ	ARC-e	PIQA	Hellaswag	OBQA	Winogrande	Avg.			
LLaMA-250M											
Post-LN	22.95	37.83	26.94	52.72	26.17	11.60	49.56	32.54			
DeepNorm	23.60	37.86	36.62	61.10	25.69	15.00	49.57	35.63			
Pre-LN	24.93	38.35	40.15	63.55	26.34	16.20	49.01	36.93			
Mix-LN	26.53	56.12	41.68	66.34	30.16	18.00	50.56	41.34			
LLaMA-1B											
Post-LN	22.95	37.82	25.08	49.51	25.04	13.80	49.57	31.96			
DeepNorm	23.35	37.83	27.06	52.94	26.19	11.80	49.49	32.67			
Pre-LN	26.54	62.20	45.70	67.79	30.96	17.40	50.51	43.01			
Mix-LN	27.99	61.93	48.11	68.50	31.35	18.80	55.93	44.66			

Accuracy (个) comparison of Pre-LN and Mix-LN on ViT models

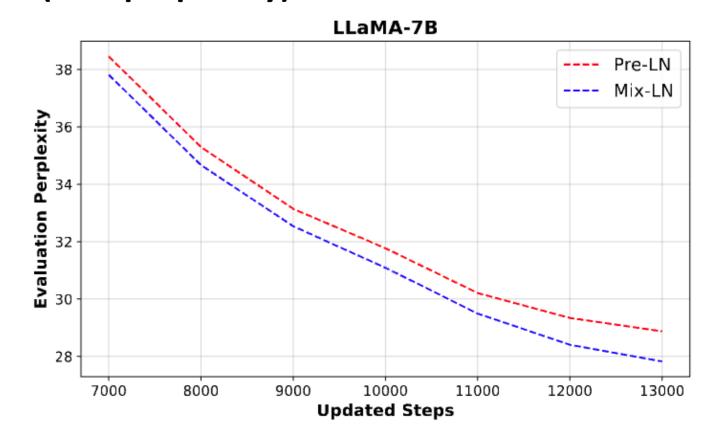

Why Does It Work?

ous normalization techniques.

 $I \approx 0$.


Vanishing derivative

(a) Layer gradient norm of LLaMA-250M with vari- (b) Performance drop comparison of LLaMA-130M across layers for Pre-LN, Post-LN, and Mix-LN.


(c) Post-LN Angular Distance (a) Mix-LN Angular Distance (b) Pre-LN Angular Distance Layer Index ℓ Layer Index ℓ Layer Index &

Angular distance from initial layer & (x-axis) with block size n (y-axis) of LLaMA-130M

Mix-LN keeps deep-layer signal alive; vanilla Pre-/Post-LN waste it.

Training curve (eval perplexity) of Mix-LN and Pre-LN with LLaMa-7B

Comparison of gradient norms and performance drops.