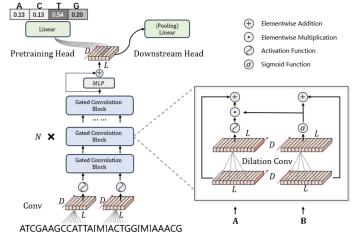


REVISITING CONVOLUTION ARCHITECTURE IN THE REALM OF DNA FOUNDATION MODELS

Yu Bo^{1*}, Weian Mao^{1,2*}, Yanjun Shao³, Weiqiang Bai⁴, Peng Ye⁴, Xinzhu Ma⁴, Junbo Zhao¹, Hao Chen¹, Chunhua Shen^{6,1,5}

¹ Zhejiang University, ² MIT, USA, ³ Yale University, USA, ⁴ Shanghai AI Lab, ⁵ Ant Group, ⁶ Zhejiang University of Technology



1. Introduction

- Recent advancements in DNA foundation models have been largely driven by Transformer and State Space Model (SSM) architectures. However, a systematic comparison with classical Convolutional Neural Networks (CNNs) on established foundation model benchmarks remains limited. This raises a critical question: Are CNN architectures genuinely being surpassed by these newer paradigms?
- ➤ We revisit the **convolutional approach for DNA foundation models**, motivated by the inherent advantages of CNNs, including robustness to varying sequence lengths, computational efficiency compared to quadratic transformer complexity, and the beneficial local inductive bias, especially for tasks with limited data. We posit that well-designed CNNs remain highly competitive for downstream genomic tasks.

2. Method

- ➤ We propose ConvNova, a simple yet effective CNN-based architecture tailored for DNA sequence modeling. ConvNova integrates three key design principles identified as crucial for performance:
- 1)Dilated Convolutions: To expand the receptive field without resorting to downsampling, which was found to degrade performance significantly in DNA tasks, unlike in other domains like computer vision.
- 2)Gated Convolutions: Employing a learnable dynamic feature selection mechanism to effectively retain relevant information and suppress noise or irrelevant segments often present in DNA sequences.
- 3)Dual-Branch Gating Framework: Implementing a two-branch structure where one branch explicitly provides gating signals to the other, facilitating complementary feature learning and enhancing network capacity.

3. Results on DNA foundation model benchmarks

Table 14: **Supervised Methods against Foundation Models on Genomic Benchmark.** Top-1 accuracy (↑) is reported for pretrained HyenaDNA, Caduceus-Ph, ConvNova, Basenji, LegNet, and the original CNN baseline (trained from scratch). The best values are in bold, and the second-best is underlined. ± indicates the error range across five random seeds.

Task	CNN (264K)	HyenaDNA (436K)	Caduceus-Ph (470K)	ConvNova (386K)	Basenji (7.4N)	LegNet (2.1M)
Enhancers				0,000		
Mouse Enhancers	0.730 ±0.032	0.779 ±0.013	0.754 ±0.074	0.784 ±0.009	0.659 ±0.155	0.504 ±0.000
Human Enhancers Cohn	0.702 ±0.021	0.718 ±0.008	0.747 ±0.004	0.743 ±0.005	0.712 ±0.030	0.739 ±0.004
Human Enhancer Ensembl	0.744 ±0.122	0.832 ±0.006	0.893 ±0.008	0.900 ±0.004	0.905 ±0.007	0.879 ±0.002
Species Classification						
Coding vs. Intergenomic	0.892 ±0.008	0.904 ±0.008	0.915 ±0.003	0.943 ±0.001	0.905 ±0.004	0.939 ±0.002
Human vs. Worm	0.942 ±0.002	0.961 ±0.002	0.973 ±0.001	0.967 ±0.002	0.957 ±0.003	0.965 ±0.001
Regulatory Elements						
Human Regulatory	0.872 ±0.005	0.862 ±0.004	0.872 ±0.011	0.873 ±0.002	0.764 ±0.005	0.764 ±0.006
Human Non-TATA Promoters	0.861 ±0.009	0.887 ±0.005	0.946 ±0.007	0.951 ±0.003	0.919 ±0.006	0.942 ±0.007
Human OCR Ensembl	0.698 ±0.013	0.744 ±0.019	0.828 ±0.006	0.793 ±0.004	0.766 ±0.009	0.802 ±0.004

Table 3: Gene Finding results. MCC-score is reported for ConvNova and baseline models. The best

(117M)

0.43

NT-H DNABERT-2 GENA-LM HyenaDNA ConvNova

(336M)

0.52

(6.5M)

(7.4M)

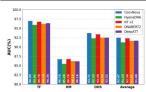


Figure 3: Chromatin Profile Prediction results. AUC Score (†) is reported for ConvNova, HyenaDNA, NT v2, DNABERT-2, and DeepATT performance on transcription factors (TF), DNase I hypersensitive sites (DHS), histone modifications (HM), and average score.

Table 1: **NT Benchmark results.** MCC/F1-score is reported for pretrained NTv2, HyenaDNA, DNABERT-2, Caduceus-Ph, and ConvNova. The best values per task are bold, and the second-best are underlined. ± indicates the error range across five random seeds.

	NTv2	HyenaDNA	DNABERT-2	Caduceus-Ph	ConvNova
	(500M)	(1.6M)	(117M)	(1.9M)	(1.7M)
Histone					
Н3	78.17 ±2.54	78.14 ±1.70	79.31 ±0.68	80.48 ±1.04	81.50 ±0.80
H3K4me1	51.64 ±1.12	44.52 ±2.59	48.34 ±4.63	52.83 ± 0.96	56.60 ±1.01
H3K4me2	37.24 ±2.25	42.68 ±2.66	43.02 ±2.92	49.88 ±2.65	57.45 ±2.27
H3K4me3	50.30 ±1.77	50.41 ±3.15	45.43 ±3.33	56.72 ±2.58	67.15 ±0.93
H3K9ac	61.05 ±1.40	58.50 ±1.75	60.04 ±1.27	63.27 ±2.29	68.10 ±1.91
H3K14ac	57.22 ±2.19	56.71 ±2.40	54.49 ±4.99	60.84 ±2.94	70.71 ±2.32
H3K36me3	60.50 ± 1.75	59.92 ±1.06	57.58 ±2.38	61.12 ±1.44	68.31 ±1.19
H3K79me3	65.78 ±2.34	66.25 ±3.65	64.38 ±0.48	67.17 ± 2.03	72.08 ±1.23
H4	79.87 ±1.34	78.15 ±1.58	78.18 ±0.98	80.10 ±1.00	81.12 ±0.93
H4ac	55.22 ±2.20	54.15 ±2.96	51.80 ± 0.10	59.26 ±3.67	66.10 ±1.20
Regulatory					
Enhancer	54.51 ±1.94	53.13 ±4.52	52.50 ±1.44	55.20 ±2.56	57.60 ±2.52
Enhancer Types	43.36 ±1.75	48.16 ±2.48	44.32 ±1.18	47.17 ±2.85	49.75 ±2.82
Promoter All	96.82 ±0.47	95.57 ±0.18	96.23 ±0.17	96.65 ±0.16	96.82 ±0.22
Promoter non-TATA	97.45 ±0.69	95.86 ±0.37	97.17 ± 0.17	$\overline{96.31} \pm 0.50$	96.76 ±0.21
Promoter TATA	96.53 ±0.81	95.88 ± 0.53	96.99 ±0.49	96.21 ±0.81	96.34 ±0.38
Splice sites					
Splice Acceptor	97.99 ±0.66	96.98 ±0.49	97.49 ±0.36	94.21 ±0.37	96.23 ±0.41
Splice Donor	98.50 ±0.43	95.27 ±1.07	94.33 ±0.27	94.69 ±0.67	96.62 ±0.61
Splice All	98.15 ±1.01	94.05 ±1.08	93.75 ±1.25	92.87 ±1.73	96.33 ±0.31

4. Ablation and Discussion

- ➤ Dilation Rate (Receptive Field) is crucial in some tasks.
- ➤ DNA Sequences might contain the trait of local dependence.

Table 6: ConvNova performance on Histone tasks in NT Benchmark. Results are reported for models with 15% and 100% full sequence receptive fields. The best values are in bold.

Task	15% Receptive Field	100% Receptive Field
H3K4me2	57.45 ±2.27	53.72 ±2.42
H3K4me3	67.15 ±0.93	60.20 ±1.91
H3K14ac	70.71 ±2.32	66.19 ±1.84
H3K9ac	65.49 ±1.83	68.10 ±1.91

Table 15: Performance comparison of NTv2 and NTv2*, where NTv2* represents our modified version. Results demonstrate that NTv2* achieves significant improvements

Task	NTv2*	NTv
H3K14ac	46.65	34.42
H3K4me2	33.10	25.79
H3K4me3	34.62	21.40

Table 5: Ablation study results. MCC-score (↑) is reported for performance comparison across different models. 'w/o Gate' represents the ablation of the Gate mechanism, while 'Single Branch' is the ablation of the double-branch structure in ConvNova. The best values are in bold, and the second-best is underlined. ± indicates the error range across experiments

Task	w/o Gate	Single Branch	ConvNova
НЗ	78.96 ±1.46	80.95 ±1.61	81.50 ±0.80
H3K4me1	57.83 ±1.87	56.45 ±1.58	56.60 ±1.01
H3K4me2	52.52 ±2.59	50.20 ±1.92	53.72 ±2.42
H3K4me3	54.45 ±1.31	58.66 ±0.97	60.20 ±1.91
H3K9ac	63.54 ±2.20	66.87 ±0.69	68.10 ±1.91
H3K14ac	63.83 ±1.03	65.34 ±2.12	66.19 ±1.84
H3K36me3	64.12 ±1.46	66.77 ±1.42	68.31 ±1.19
H3K79me3	69.49 ±1.75	71.23 ±1.37	72.08 ±1.23
H4	79.27 ±1.09	80.55 ±0.61	81.12 ±0.93
H4ac	62.02 ±2.28	63.07 ±1.10	64.75 ±1.90

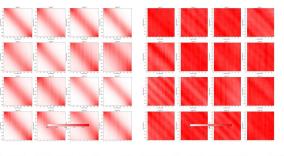


Figure 5: Visualization of the attention maps for NTv2* (Left) and NTv2 (Right). The asterisk (*) denotes the modified version. The modified initialization places more emphasis on neighboring tokens in the attention map.