Learning Structured Representations by Embedding Class Hierarchy with Fast Optimal Transport

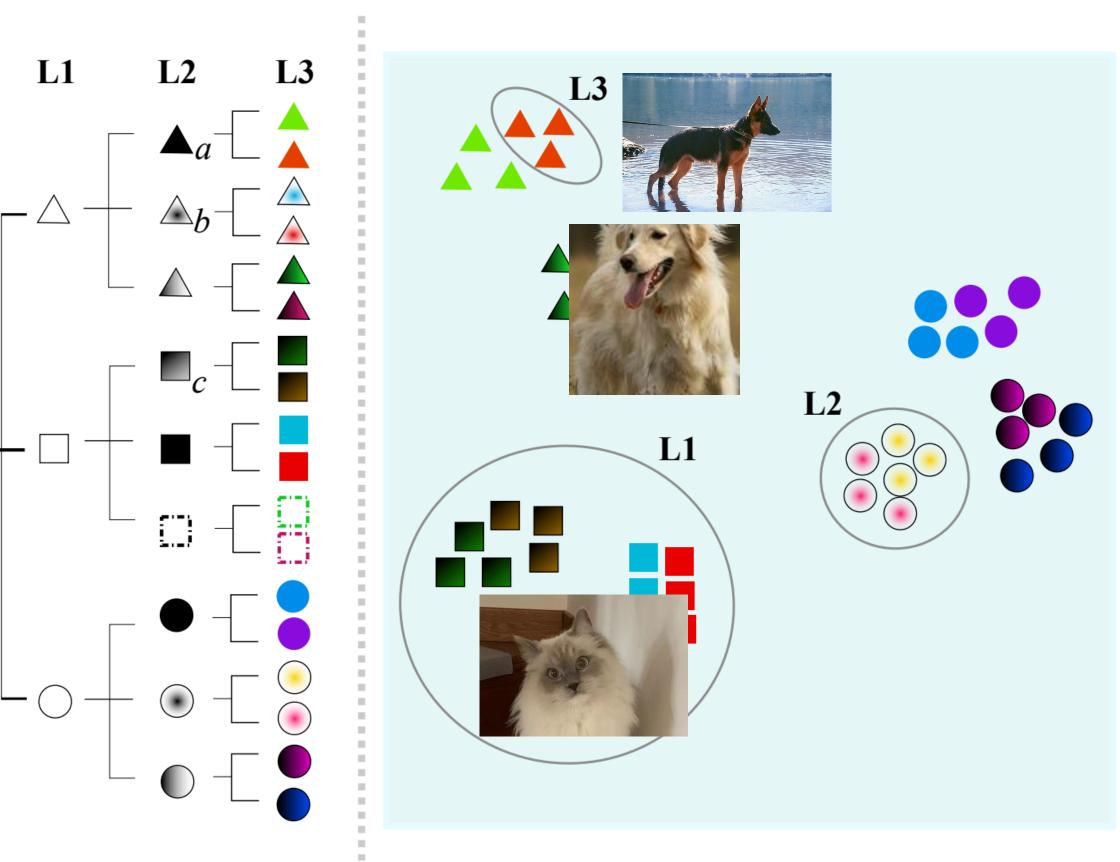
ICLR '25

Siqi Zeng, Sixian Du, Makoto Yamada, Han Zhao

Background: Learning Structured Representations

Flat Representation

Structured Representation



Structured Representations w/ Euclidean CoPhenetic Correlation Coefficient

$$\mathrm{CPCC}(d_{\mathcal{T}},\rho) := \frac{\sum_{i < j} (d_{\mathcal{T}}(v_i,v_j) - \overline{d_{\mathcal{T}}})(\rho(v_i,v_j) - \overline{\rho})}{\sqrt{\sum_{i < j} (d_{\mathcal{T}}(v_i,v_j) - \overline{d_{\mathcal{T}}})^2} \sqrt{\sum_{i < j} (\rho(v_i,v_j) - \overline{\rho})^2}}$$

- $\rightarrow \rho(v_i, v_j) :=$ The Euclidean distance between two class centroids, where v_i and v_j are fine classes.
- $\rightarrow d_{\mathcal{T}}(v_i,v_j):=$ The shortest path between two vertices on the tree.

Final Objective:
$$\mathscr{L}(\mathscr{D}) = \sum_{(x,y)\in\mathscr{D}} \mathscr{C}_{\mathsf{Flat}}(y,\hat{y}) - \lambda \cdot \mathsf{CPCC}(d_{\mathscr{T}},\rho)$$

Research Questions In Our Work

- RQ1: What's the limitation of ℓ_2 -CPCC and how to address it?
 - A: EMD-CPCC!
- RQ2: EMD is slow. Can we make it faster for CPCC?
 - A: Yes, and we propose the FastFT method as an approximation of EMD for our learning setting.

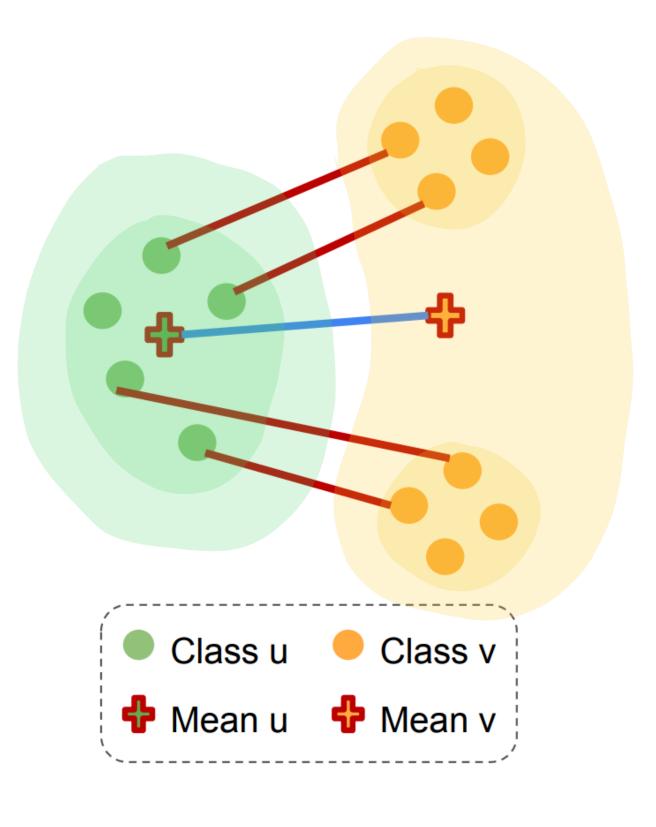
RQ1: Motivation of Using EMD-CPCC

Mis-representation of "multi-mode" distributions

 $\rightarrow \rho_{\ell_2}(u,v) :=$ The Euclidean distance between two class centroids, where u and v are fine classes.

Our method: replacing $\rho_{\mathcal{C}_2}$ with ρ_{EMD} ,

- We learn more fine-grained structured representations affected by distribution geometry
- EMD depends on pairwise relationship for each source-target value pair in the support
- We can also use other EMD approximation methods for ρ , all of them belongs to **O**ptimal**T**ransport-**CPCC** family. $\rho_{\ell\gamma}$

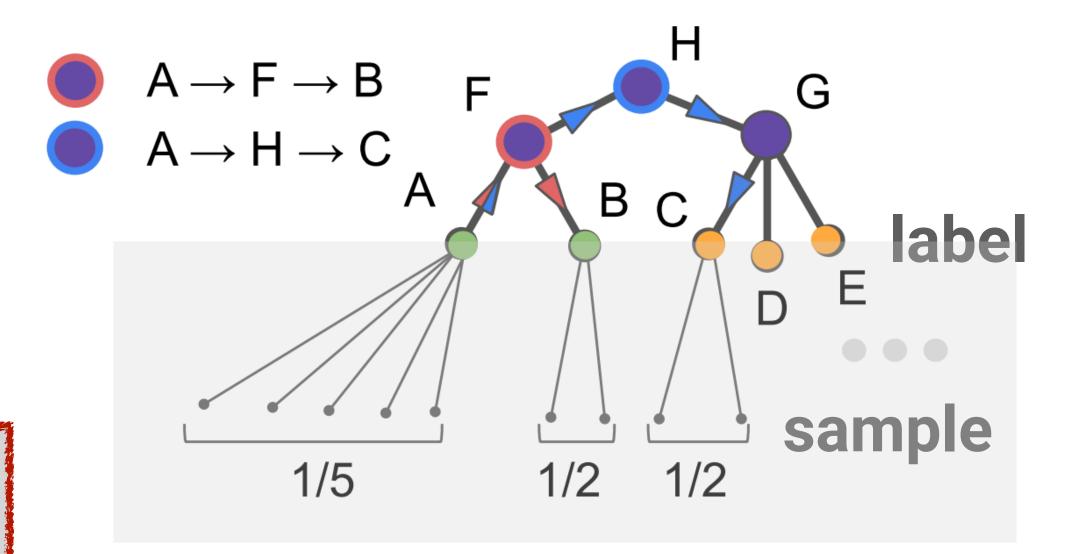


$$-\rho_{\ell_2}$$
 $-\rho_{\mathsf{EMD}}$

RQ2: Fast Optimal Transport = FlowTree w/ Constructed Label Tree (FastFT)

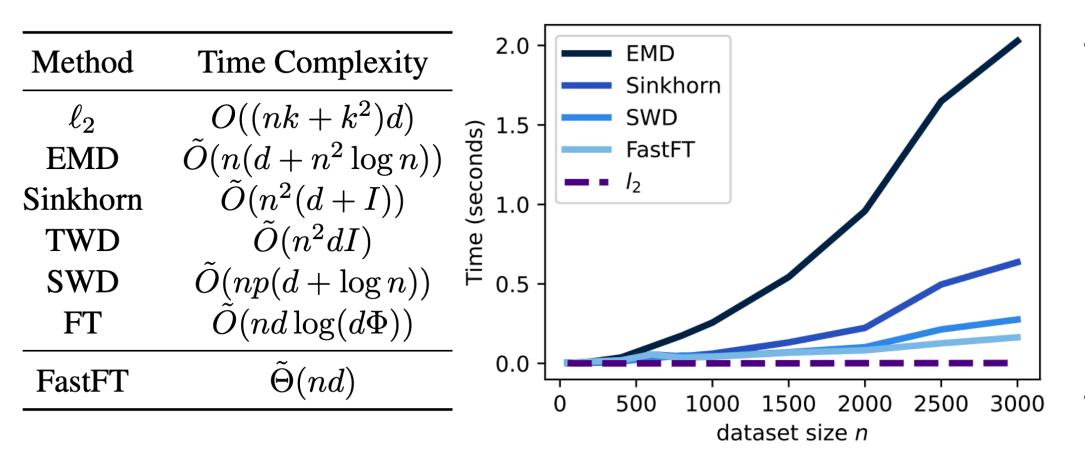
- Tree-based approximation (FlowTree, TWD...) are linear time if tree exists, but building a tree is slow (ex., QuadTree, learning tree weights, ...).
- We have our label tree → Fast FlowTree = we run *FlowTree* on *Augmented Label Tree*!
- Augmented Label Tree:
 - We extend label tree to sample tree by 1 level downwards
 - Every CPCC call only uses a subtree rooted by an internal node

Theorem 3.2: With Augmented Label Tree, running FlowTree reduces to using Greedy Matching in 1d-EMD w/o sorting, so the time complexity is linear O(nd).



Results 1: Runtime Comparison

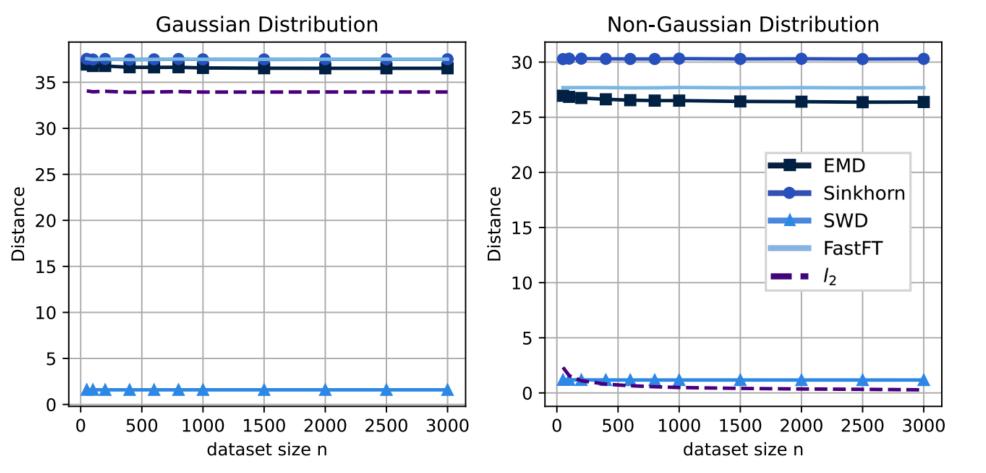
• Fast FT is linear-time, and has better advantage for larger batch size



Dataset	Objective	Per Epoch (s)	Dataset	Objective	Per Epoch (s)
	Flat ℓ_2	85.88 (3.69) 83.78 (9.80)		Flat ℓ_2	147.67 (4.54) 149.39 (1.24)
CIFAR10 (b=128)	FastFT	85.21 (4.26)	<i>INAT</i>	FastFT	132.01 (3.24)
	EMD Sinkhorn SWD	87.70 (2.43) 85.65 (4.15) 92.90 (4.65)	(b=1024)	EMD Sinkhorn SWD	234.68 (4.40) 165.69 (4.60) 152.52 (8.90)

Results 2: Approximation Error of EMD

- FastFT is a good approximation of EMD
- EMD reduces to \mathcal{C}_2 for two Gaussians
- SWD is closer to ℓ_2 for multi-mode scenario



Results 3: Hierarchical Classification & Retrieval

Setup source train/test

Coarse

Dataset	Objective	sAcc	tAcc	sMAP	tMAP	Dataset	sAcc	tAcc	sMAP	tMAP
CIFAR10	Flat	99.58	87.30	99.22	89.66	INAT	94.63	38.81	70.41	34.00
	FastFT	99.61	87.79	99.91	93.04		94.66	39.43	72.90	35.63
	EMD Sinkhorn	99.61 99.61	87.45 87.41	99.88 99.87	93.07 92.60		94.64 94.30	41.01 36.94	73.87 68.75	35.58 34.92
	SWD	99.56	87.63	99.36	90.12		94.52	39.38	75.13	38.11

Fine

Dataset	Objective	sAcc	tAcc	sMAP	Dataset	sAcc	tAcc	sMAP
	ℓ_2	96.96	55.71	99.22		88.62	26.78	56.10
CIFAR10	FastFT EMD Sinkhorn SWD	96.90 97.05 96.95 96.96	55.99 56.12 54.89 59.21	99.24 99.24 99.27 99.45	INAT	88.49 88.68 88.08 88.46	27.10 26.78 26.77 26.78	56.21 56.83 51.56 54.19

- OT-CPCC > Flat on coarse level, OT-CPCC > ℓ_2 -CPCC on fine level.
- For generalization performance, there's no single OT method always achieves the best.

Conclusion and Future Work

Contribution

- Identify limitation of ℓ_2 -CPCC for learning structured representations, propose OT-CPCC
- Propose FastFT, a linear-time EMD approximation algorithm with low approximation error
- Improved generalization, and preserve tree information better

Thanks for listening!

Code

Contact: siqi6@illinois.edu