

On the Turing Completeness of Prompting



Ruizhong Qiu UIUC (Presenter)

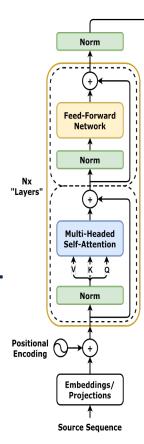
Zhe Xu UIUC

Wenxuan Bao UIUC

Hanghang Tong UIUC

Expressive Power of Transformers

- Expressive power: what functions a model class can represent.
 - The mainstream architecture of LLMs is decoder-only **Transformers**.
- Existing studies: the classical one-model-one-task paradigm.
 - [PBM21]: The class of all hard-attention Transformers is Turing-complete.
 - [MS24]: can compute TIME(t(n)) functions in O(t(n)) chain-of-thought (CoT) steps.
- Practice: LLM prompting (i.e., the one-model-many-tasks paradigm).
 - Fundamentally, how powerful is the LLM prompting paradigm?



Main Results

- In this work, we show that prompting is in fact **Turing-complete**.
 - There exists a single finite-size Transformer Γ on which prompting is Turing-complete.
 - Not only existence: We give a simple and explicit construction.
 - CoT complexity: can compute TIME(t(n)) functions in $O(t(n)\log t(n))$ CoT steps.
 - The single Transformer Γ is nearly as efficient as of the class of all Transformers, whose CoT complexity is O(t(n)).
 - **Precision complexity**: can compute TIME(t(n)) functions in $O(\log(n+t(n)))$ bits of precision.
 - The single Transformer Γ has the same precision complexity as that of the class of all Transformers.

Turing Completeness of Prompting (Theorem 3.1)

- Notation:
 - Let $\underline{\mathsf{generate}}_{\Gamma} \colon \Sigma^+ \to \Sigma^+$ denote *autoregressive* generation with a Transformer $\Gamma \colon \Sigma^+ \to \Sigma$.
- There exist:
 - a finite alphabet Σ , a finite-size decoder-only Transformer $\Gamma: \Sigma^+ \to \Sigma$, and
 - coding schemes tokenize: $\{0,1\}^* \to \Sigma^*$ and readout: $\Sigma^* \to \{0,1\}^*$
- with which prompting is **Turing-complete**, in the sense that:
 - for every computable function φ : dom $\varphi \to \{0,1\}^*$ with dom $\varphi \subseteq \{0,1\}^*$,
 - there exists a prompt $\pi_{\varphi} \in \Sigma^+$ such that for every input $\mathbf{x} \in \text{dom } \varphi$,
 - generate $\Gamma\left(\boldsymbol{\pi}_{\varphi}\cdot\operatorname{tokenize}(\boldsymbol{x})\right)$ computes a finite CoT, and readout $\left(\operatorname{generate}_{\Gamma}\left(\boldsymbol{\pi}_{\varphi}\cdot\operatorname{tokenize}(\boldsymbol{x})\right)\right)=\varphi(\boldsymbol{x})$.

• Remarks:

- Σ , Γ , tokenize, and readout are independent of the function φ ;
- The prompt π_{φ} is independent of the input x;
- For any $x \in \{0,1\}^*$, tokenize & readout run in time O(|x|) & $O(|\varphi(x)|)$ on a RAM, respectively.

Proof Sketch

- How should we theoretically formulate what prompting is?
 - Natural languages are too unstructured.
 - Turing machines / common programming languages are a bit too complex.
 - Solution: a simple model of computation that is **nearly as efficient** as Turing machines.
- Construct a new model of computation: 2-tape Post—Turing machines (2-PTMs).
 - 2-PTMs can be easily encoded into prompts using a finite alphabet.
 - Any TIME(t(n)) function can be computed by a 2-PTM in $O(t(n) \log t(n))$ steps.
- Construct a finite-size Transformer Γ to simulate 2-PTMs via CoT steps.
 - Define CoT steps to record the execution of 2-PTMs.
 - The constructed Γ can compute any TIME(t(n)) function within:
 - $O(t(n) \log t(n))$ CoT steps and
 - $O(\log(n+t(n)))$ bits of precision.

A Demonstrative Example

- Construction: A finite-size Transformer Γ over a finite-size alphabet Σ , where $\Sigma = \{\#, AL, BL, AR, BR, A0, B0, A1, B1, A!, B!, A?, B?, -, +, @, ^, \$, /, =, :, 0, 1\}$
- Example: Suppose φ decides the DYCK language (balanced parenthesis sequences) [Sch63].
 - The corresponding prompt π_{arphi} for deciding the DYCK language:

```
^A?++++++++++++@A0ALA0ALA?----@ARARA1ARBLB?++@A1#ARA?++++@B1BRB!+++@BLB!+++#@B0ARB!-----@ARARA1#$
```

- The input 00 has **Shannon's** encoding [Sha56] S(00) = 1010, and it is tokenized as: tokenize(00) = ARARARARALALA1ALALA1=-----@
- The generated CoT steps for computing $\varphi(00)$:

- The final readout answer is :0\$, which correctly computes $\varphi(00) = 0$ (because $00 \notin DYCK$).
- More examples at:

https://github.com/q-rz/ICLR25-prompting-theory/blob/main/main.ipynb

Thanks for watching

On the Turing Completeness of Prompting

Ruizhong Qiu UIUC (Presenter)

Zhe Xu UIUC

Wenxuan Bao UIUC

Hanghang Tong UIUC

