Approximation Algorithms with Predictions

Antonios Antoniadis University of Twente

Marek Eliáš

Adam Polak

Moritz Venzin

Bocconi University

Classical algorithms

- worst-case guarantees
- overly pessimistic

Classical algorithms

- worst-case guarantees
- overly pessimistic

Machine learning

- powerful for typical inputs
- no guarantees, can go crazy

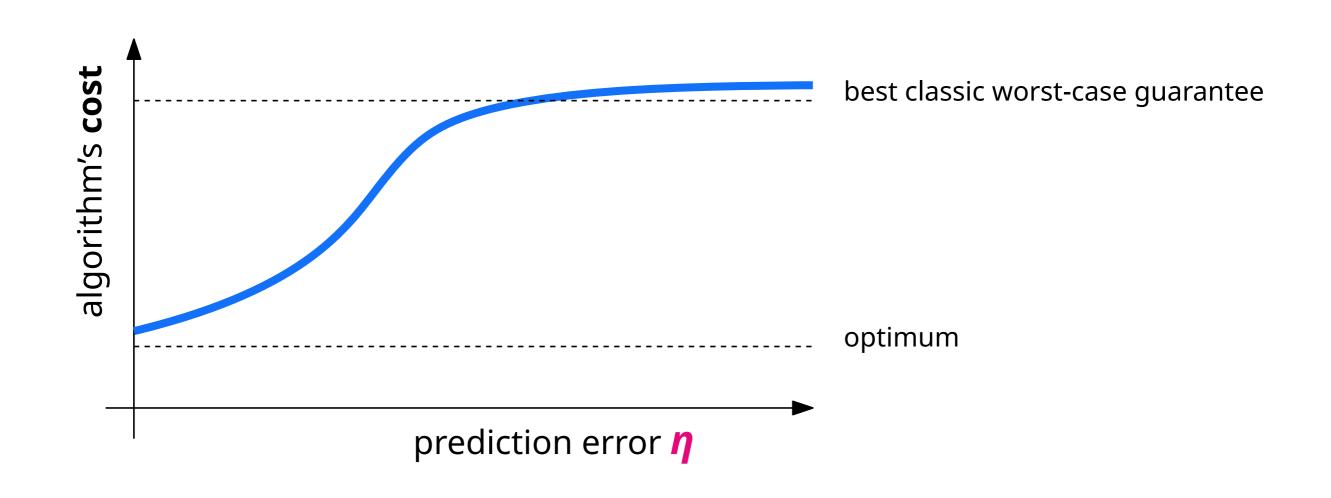
Classical algorithms

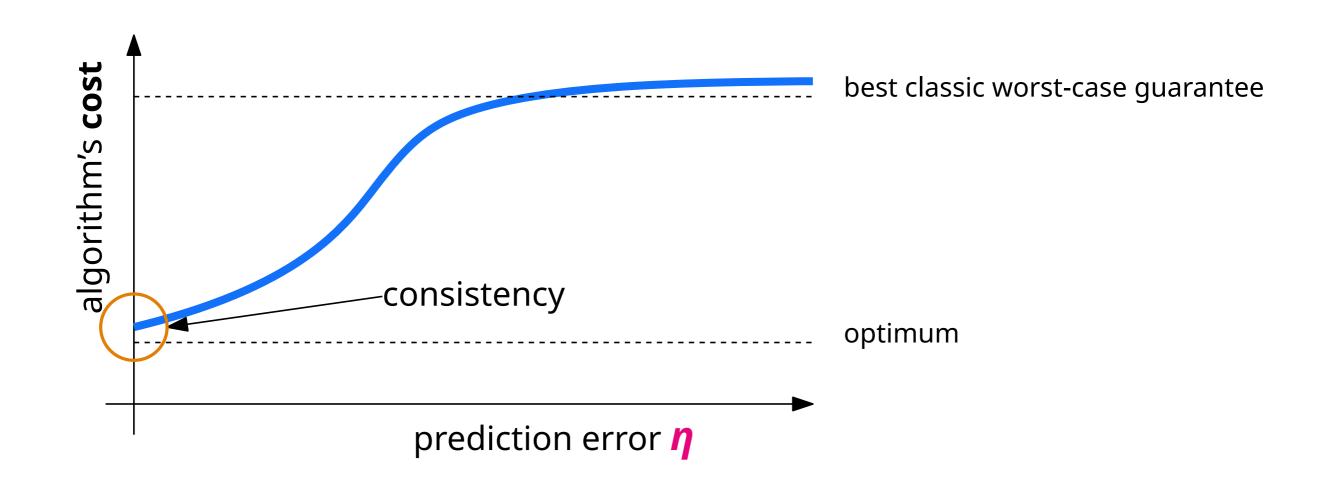
- worst-case guarantees
- overly pessimistic

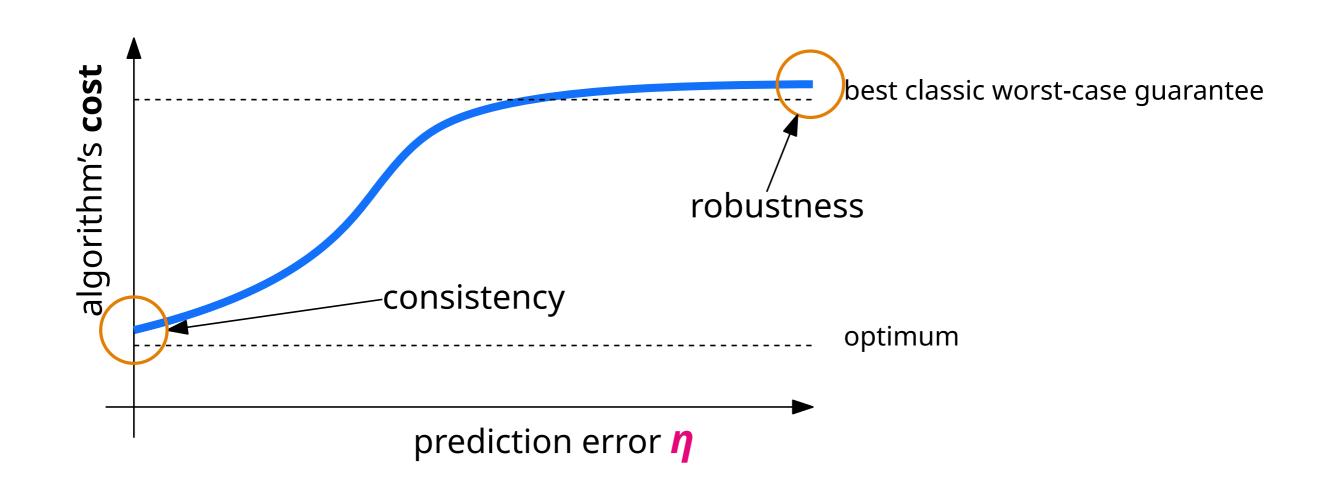
Machine learning

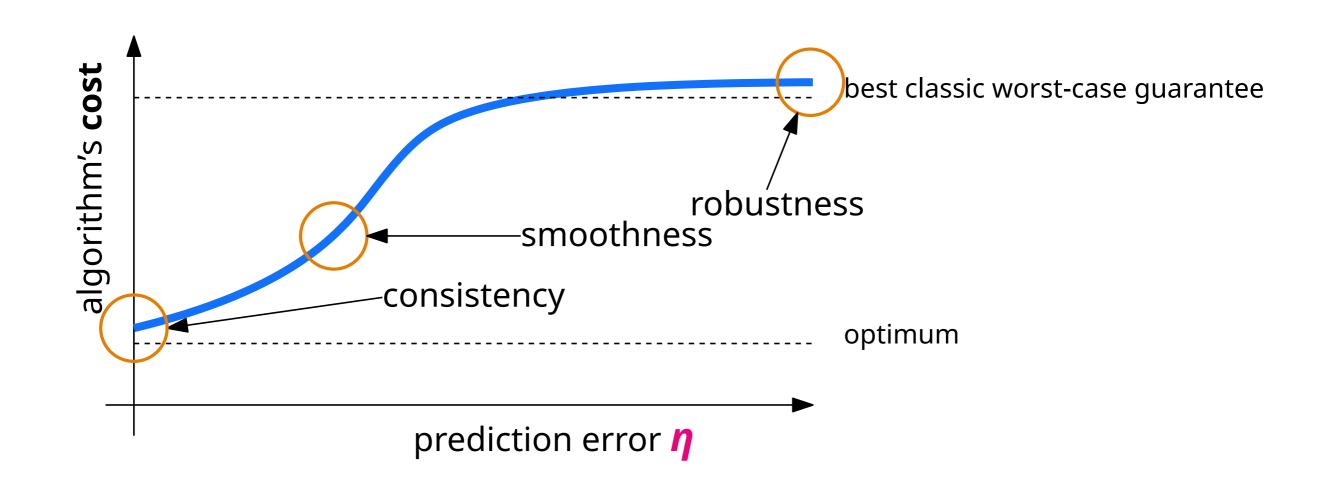
- powerful for typical inputs
- no guarantees, can go crazy

Best of both worlds: algorithms with predictions





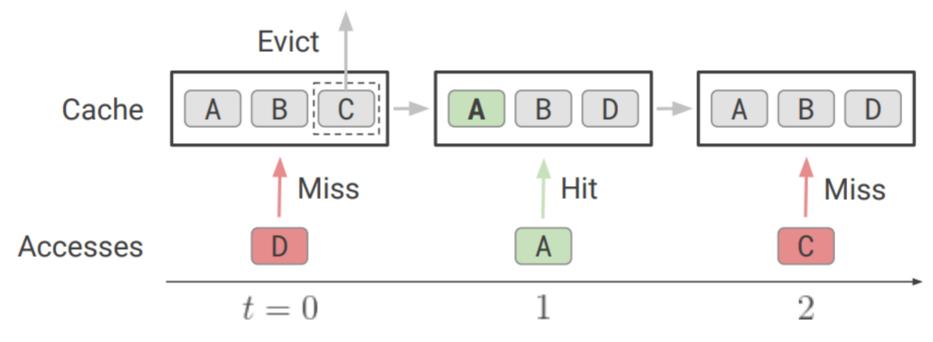




Predictions can improve competitive ratio of online algorithms

E.g.: caching

[Lykouris, Vassilvitskii, ICML'18]



source: arxiv.org/abs/2006.16239

Prediction: When currently requested item will be requested again?

Result: $O(\min(\log k, \sqrt{\eta/OPT}))$ -competitive algorithm $(\Theta(\log k))$ is tight for classic)

Predictions can improve **running time** of **static** algorithms

E.g.: max weight bipartite matching

[Dinitz, Im, Lavastida, Moseley, Vassilvitskii, NeurIPS'21]

Primal:

Dual:

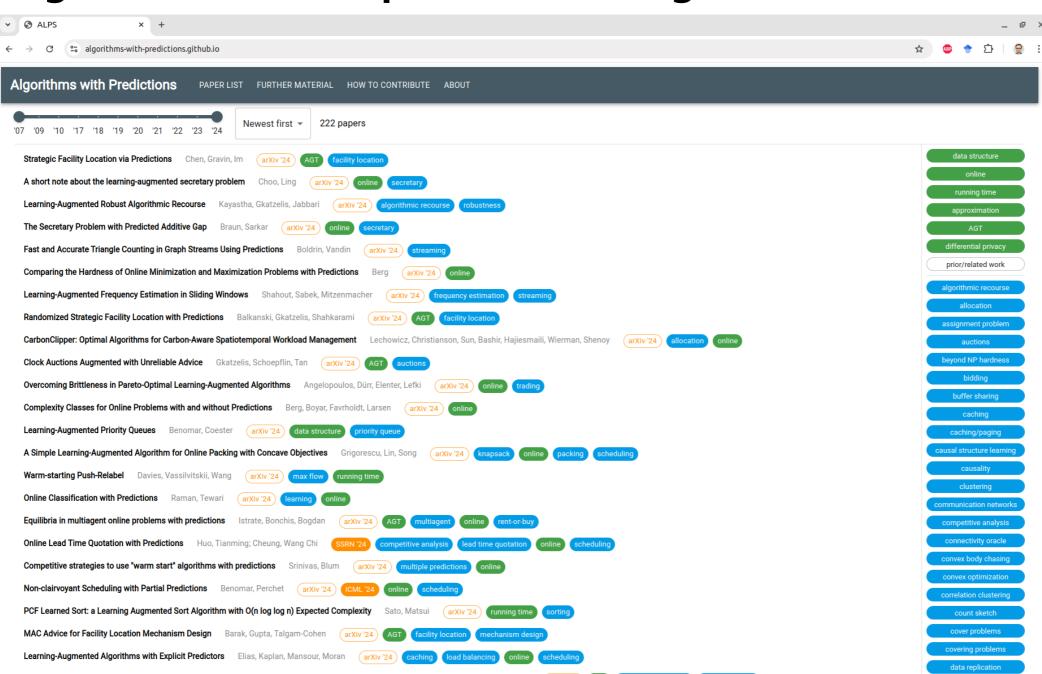
minimize
$$\sum_{e \in E} c_e x_e$$
 maximize $\sum_{v \in V} y_v$ subject to $\sum_{e \in N(v)} x_e = 1$ $\forall v \in V$ subject to $y_u + y_v \leqslant c_{u,v}$ $\forall (u,v) \in E$ $x_e \geqslant 0$ $\forall e \in E$

Prediction: dual LP solution

Result: $O(m\sqrt{n} \cdot \min(\sqrt{n}, \eta))$ time algorithm

(without predictions O(mn) time Hungarian algorithm often used in practice)

algorithms-with-predictions.github.io

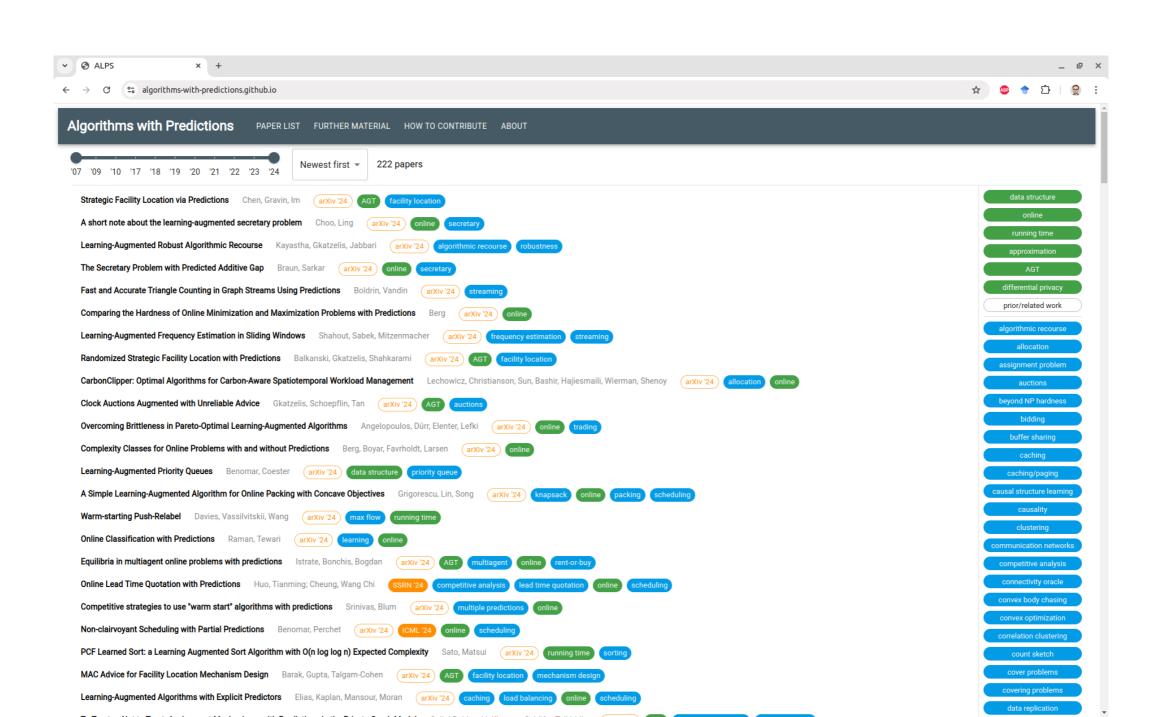


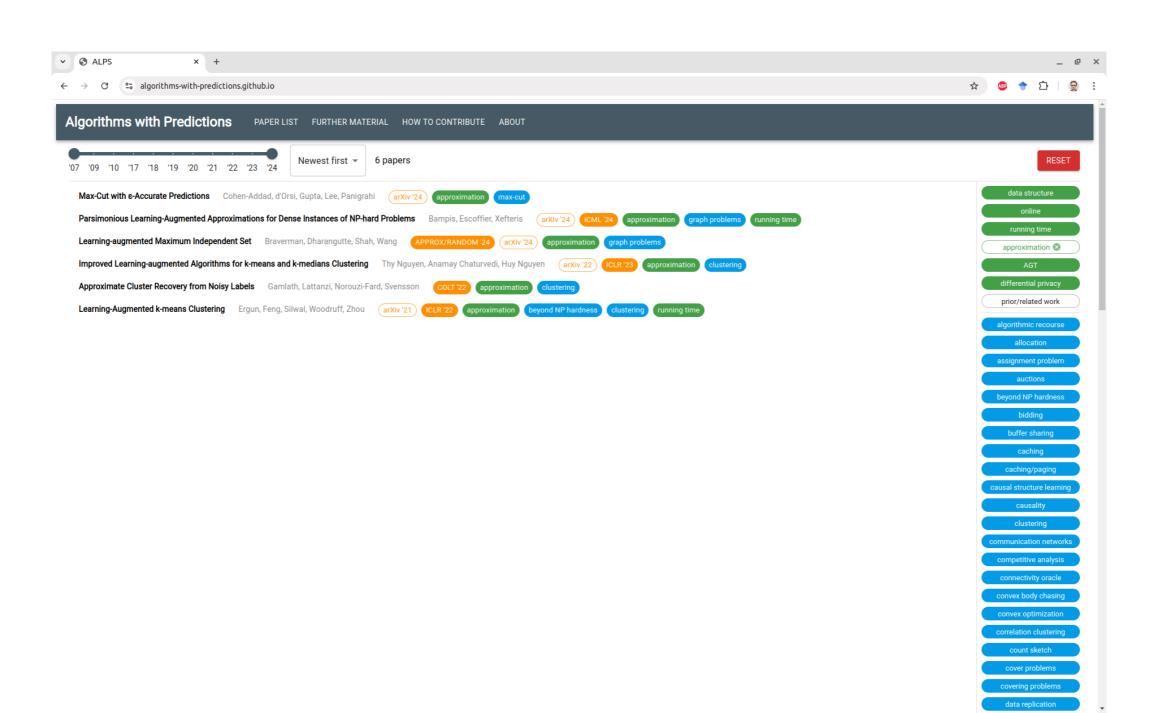
Alexander Lindermayr

Approximation algorithms

$$value(ALG) \leq \rho \cdot value(OPT)$$

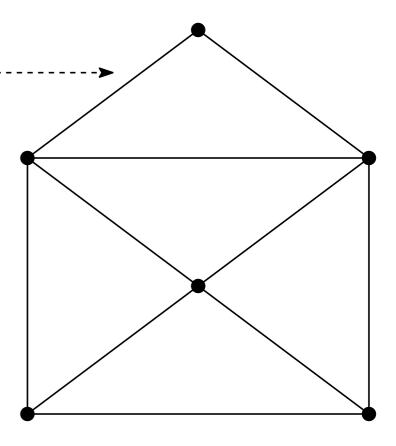
approximation ratio (approximation factor)





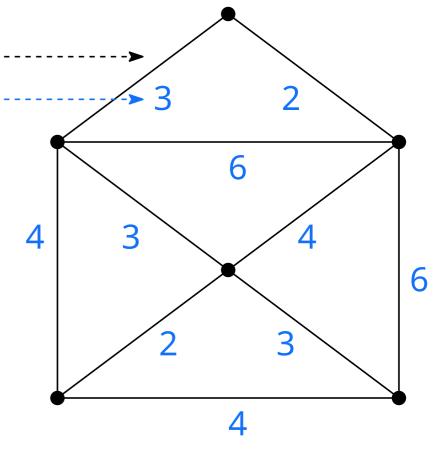
Input:

▶ undirected **graph** G = (V, E)



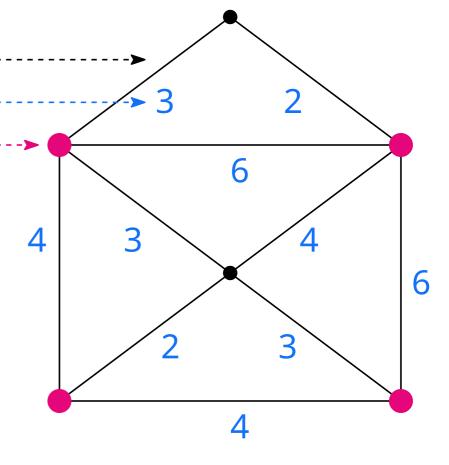
Input:

- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geqslant 0}$



Input:

- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geq 0}$
- ▶ set of **terminals** $T \subseteq V$

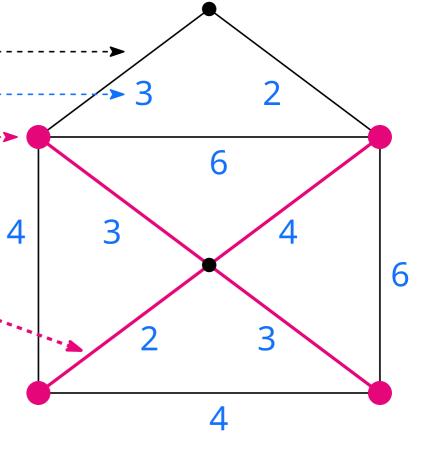


Input:

- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w: E \to \mathbb{R}_{\geqslant 0}$
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T



Input:

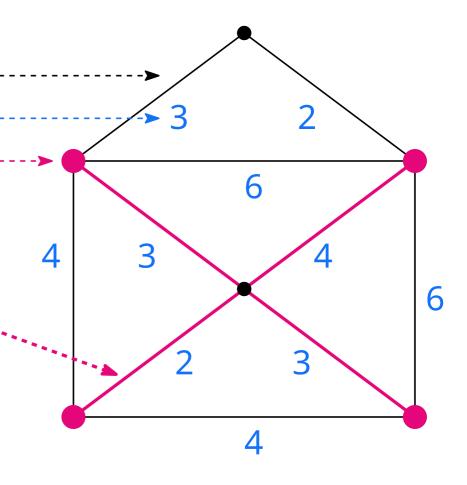
- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w: E \to \mathbb{R}_{\geqslant 0}$
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T

What is known?

► NP-hard [Karp '72]



Input:

- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geqslant 0}$ -----
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T

What is known?

- ► NP-hard
 [Karp '72]
- ▶ **2**-approximation in (near-)**linear** $O(E + V \log V)$ time

[Takahashi, Matsuyama '80], [Kou, Markowsky, Berman '81], [Wu, Widmayer, Wong '86], [Widmayer '86], [Mehlhorn '88]

Input:

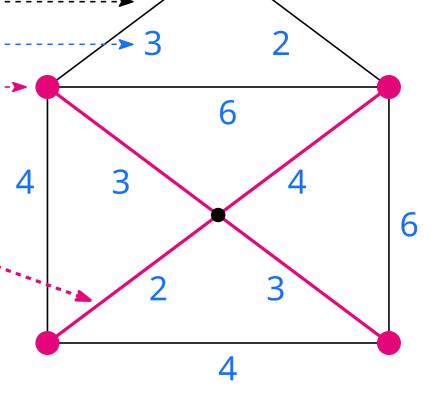
- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geqslant 0}$
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T

What is known?

NP-hard [Karp '72] $w(\mathsf{ALG}(I)) \leqslant \mathbf{2} \cdot w(\mathsf{OPT}(I))$ for every instance I



▶ **2**-approximation in (near-)**linear** $O(E + V \log V)$ time

[Takahashi, Matsuyama '80], [Kou, Markowsky, Berman '81], [Wu, Widmayer, Wong '86], [Widmayer '86], [Mehlhorn '88]

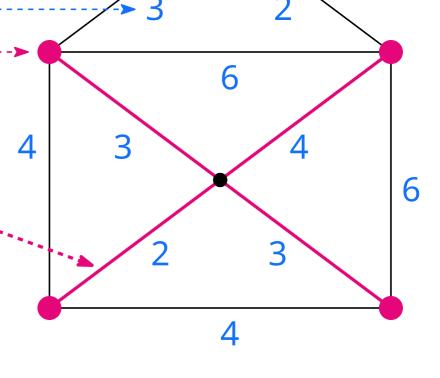
Input:

- undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geqslant 0}$ -
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T

 $w(\mathsf{ALG}(I)) \leq \mathbf{2} \cdot w(\mathsf{OPT}(I))$ for every instance I



What is known?

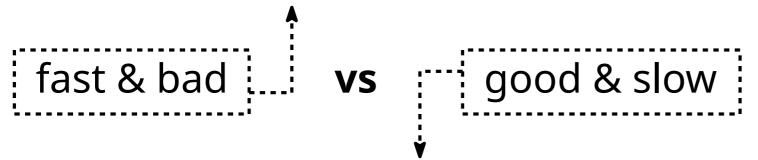
NP-hard [Karp '72]

2-approximation in (near-)**linear** $O(E + V \log V)$ time

[Takahashi, Matsuyama '80], [Kou, Markowsky, Berman '81], [Wu, Widmayer, Wong '86], [Widmayer '86], [Mehlhorn '88]

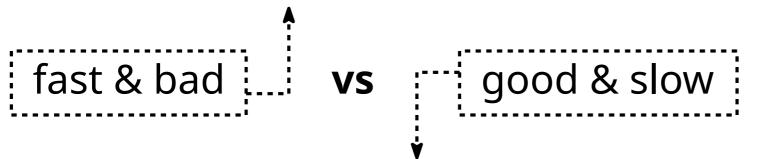
► 1.39-approximation in unspecified polynomial V^O(1) time
[Zelikovsky '93], [Prömel, Steger '97], [Karpiński, Zelikovsky '97], [Hougardy, Prömel '99], [Robins, Zelikovsky '00], [Byrka, Grandoni, Rothvoss, Sanità '10]

▶ 2-approximation in (near-)linear $O(E + V \log V)$ time



▶ 1.39-approximation in unspecified polynomial $V^{O(1)}$ time

▶ 2-approximation in (near-)linear $O(E + V \log V)$ time



▶ 1.39-approximation in unspecified polynomial $V^{O(1)}$ time

Could we have both **fast** and **good**?

▶ 2-approximation in (near-)linear $O(E + V \log V)$ time

fast & bad vs good & slow

▶ 1.39-approximation in unspecified polynomial $V^{0(1)}$ time

Could we have both **fast** and **good**?

Yes!*

*If we have accurate enough **predictions**

[Antoniadis, Eliáš, **P.**, Venzin '24]

▶ 2-approximation in (near-)linear $O(E + V \log V)$ time

fast & bad vs good & slow

▶ 1.39-approximation in unspecified polynomial $V^{O(1)}$ time

Could we have both **fast** and **good**?

Yes!*

*If we have accurate enough **predictions**

[Antoniadis, Eliáš, P., Venzin '24]

Steiner Tree with predictions

Input:

- ▶ undirected graph G = (V, E)
- ▶ edge weights $w : E \to \mathbb{R}_{\geq 0}$
- ▶ set of terminals $T \subseteq V$

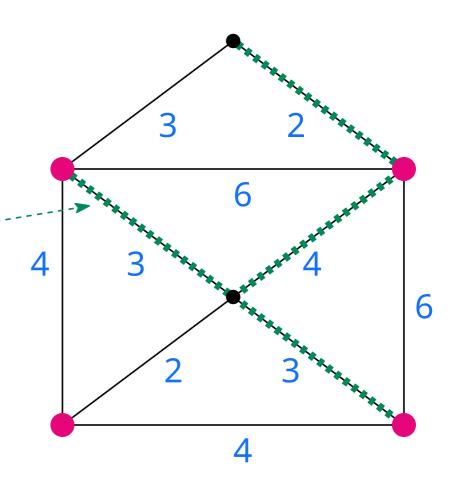
Prediction:

▶ a subset of edges $PRED \subseteq E$

(not necessarily feasible)

Output:

min weight subgraph of G spanning T



Steiner Tree with predictions

Input:

- ▶ undirected graph G = (V, E)
- ▶ edge weights $w : E \to \mathbb{R}_{\geq 0}$
- ▶ set of terminals $T \subseteq V$

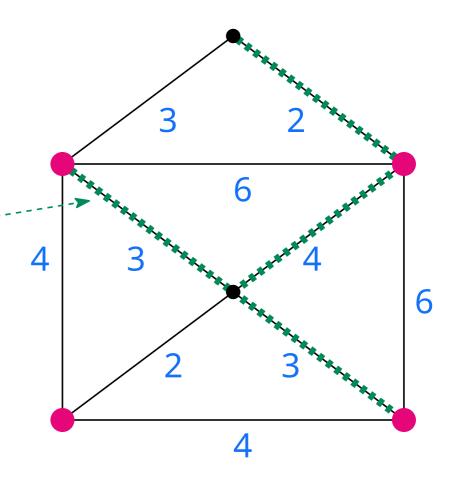
Prediction:

▶ a subset of edges $PRED \subseteq E$

(not necessarily feasible)

Output:

min weight subgraph of G spanning T



Our result:

 \blacktriangleright (1 + η /OPT)-approximation in (near-)linear $O(E + V \log V)$ time

prediction error $\eta := w(PRED \setminus OPT) + w(OPT \setminus PRED)$

Steiner Tree with predictions

Input:

- ▶ undirected graph G = (V, E)
- ▶ edge weights $w : E \to \mathbb{R}_{\geq 0}$
- ▶ set of terminals $T \subseteq V$

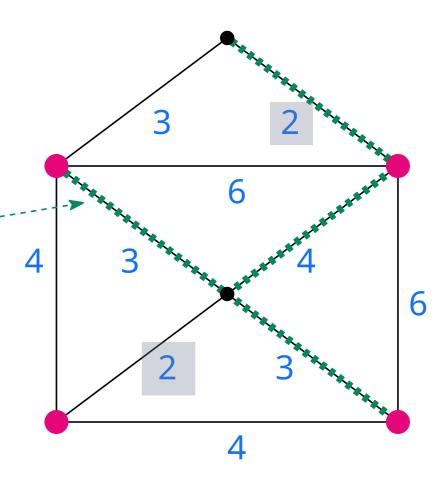
Prediction:

▶ a subset of edges $PRED \subseteq E$

(not necessarily feasible)

Output:

min weight subgraph of G spanning T

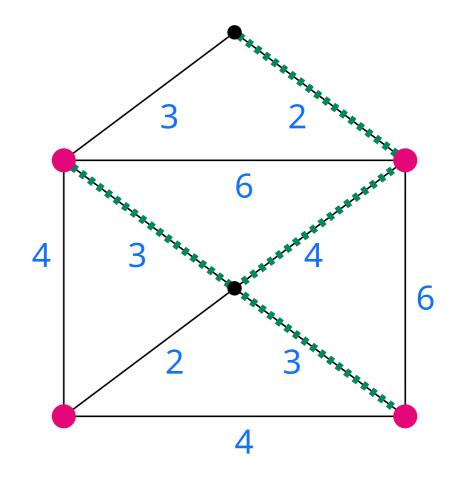


Our result:

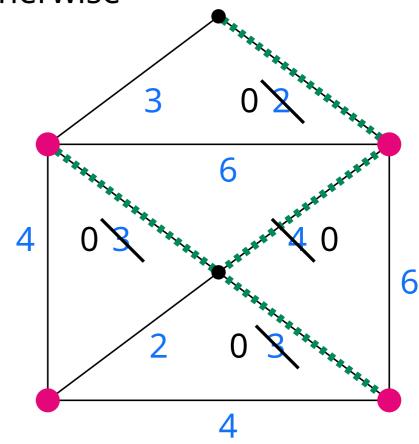
 \blacktriangleright (1 + η /OPT)-approximation in (near-)linear $O(E + V \log V)$ time

prediction error $\eta := w(PRED \setminus OPT) + w(OPT \setminus PRED)$

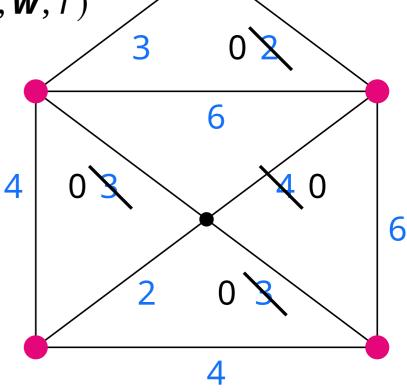
▶ read input G = (V, E), $W : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$



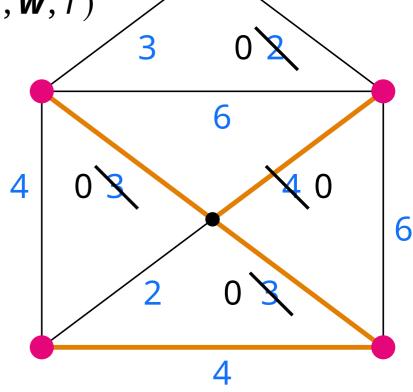
- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{\boldsymbol{w}}(\boldsymbol{e}) = \begin{cases} \boldsymbol{0}, & \text{if } \boldsymbol{e} \in \mathsf{PRED} \\ w(\boldsymbol{e}), & \text{otherwise} \end{cases}$



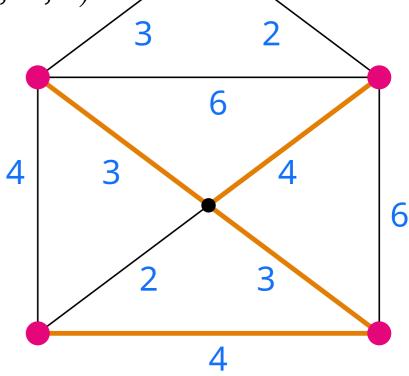
- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{\boldsymbol{w}}(\boldsymbol{e}) = \begin{cases} \boldsymbol{0}, & \text{if } \boldsymbol{e} \in \mathsf{PRED} \\ w(\boldsymbol{e}), & \text{otherwise} \end{cases}$
- run the (near-)linear time 2-approximation on (G, \overline{w}, T)



- ▶ read input G = (V, E), $w : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{w}(e) = \begin{cases} 0, & \text{if } e \in PRED \\ w(e), & \text{otherwise} \end{cases}$
- run the (near-)linear time 2-approximation on (G, \overline{w}, T)

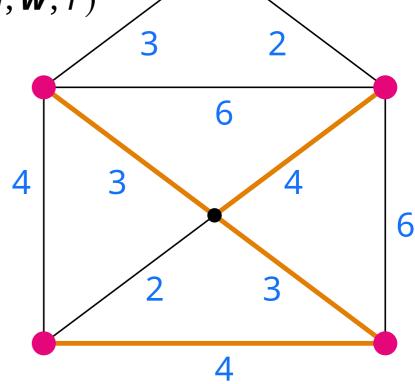


- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{\boldsymbol{w}}(\boldsymbol{e}) = \begin{cases} \boldsymbol{0}, & \text{if } \boldsymbol{e} \in \mathsf{PRED} \\ w(\boldsymbol{e}), & \text{otherwise} \end{cases}$
- run the (near-)linear time 2-approximation on (G, \overline{w}, T)
- return what it returned

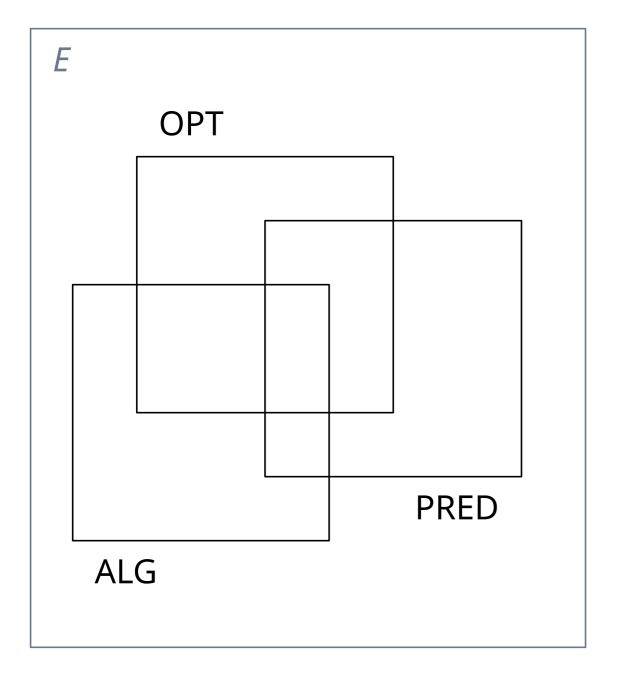


- ▶ read input G = (V, E), $w : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{w}(e) = \begin{cases} 0, & \text{if } e \in PRED \\ w(e), & \text{otherwise} \end{cases}$
- run the (near-)linear time **2-approximation** on (G, \overline{w}, T)
- return what it returned

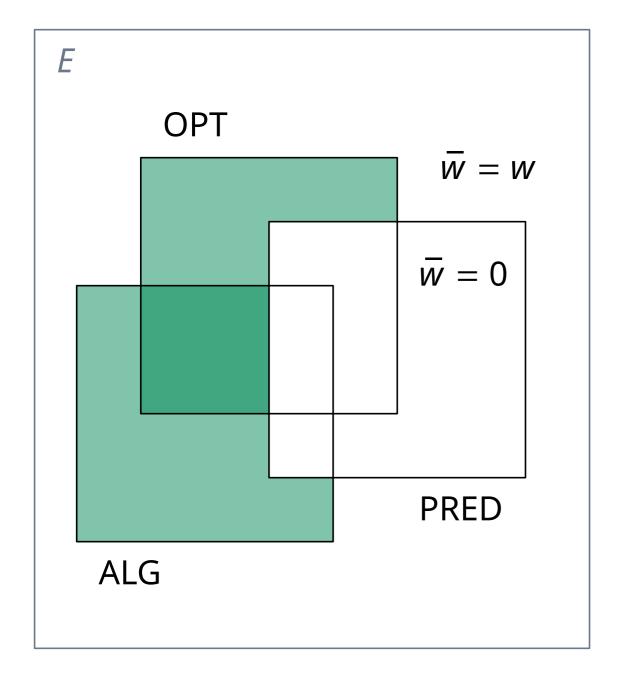
Claim: $w(ALG) \le (1 + \eta/OPT) \cdot OPT = OPT + \eta$



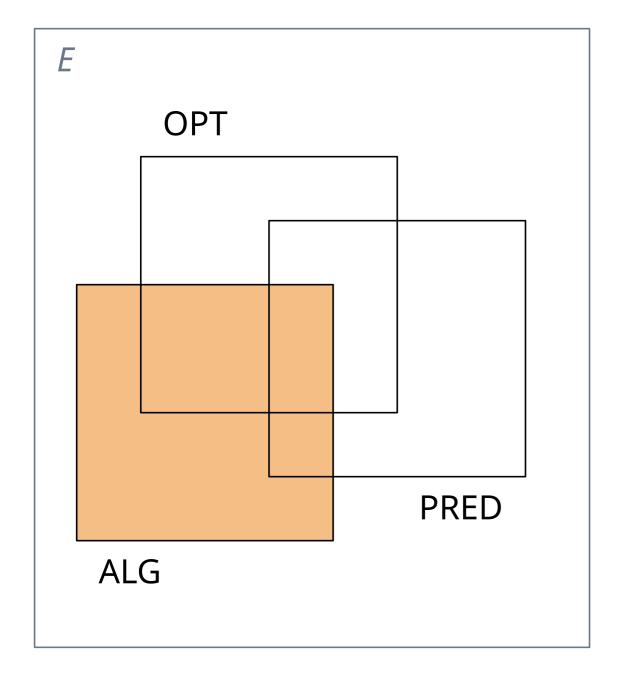




$$\overline{w}(ALG) \leqslant 2 \cdot \overline{w}(OPT)$$

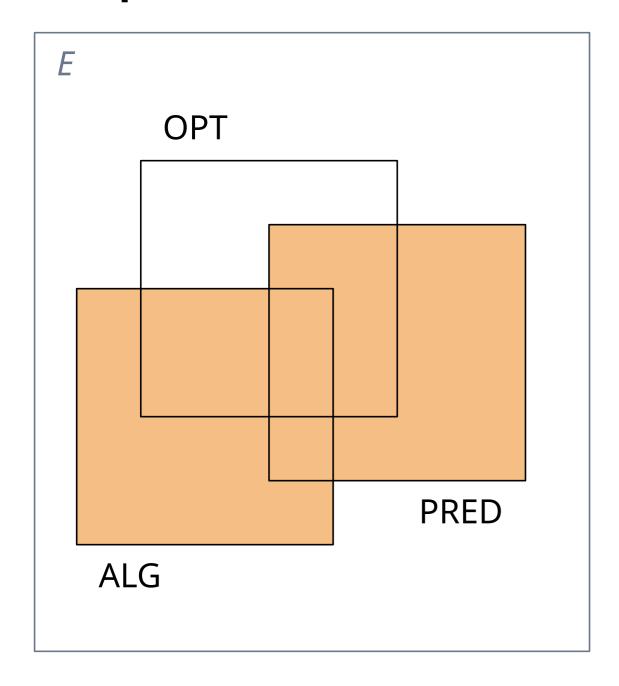


$$\overline{w}(ALG) \le 2 \cdot \overline{w}(OPT)$$
 $w(ALG \setminus PRED) \le 2 \cdot w(OPT \setminus PRED)$



$$\overline{w}(ALG) \leqslant 2 \cdot \overline{w}(OPT)$$
 $w(ALG \setminus PRED) \leqslant 2 \cdot w(OPT \setminus PRED)$

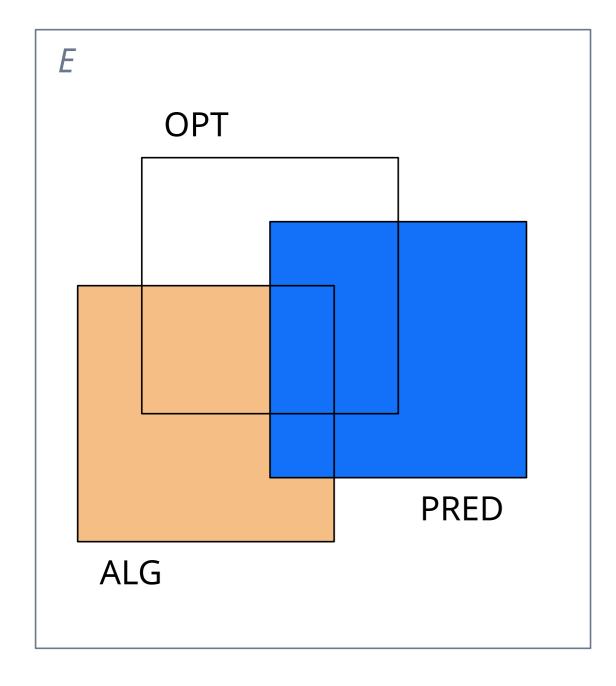
w(ALG)



$$\overline{w}(ALG) \le 2 \cdot \overline{w}(OPT)$$

$$w(ALG \setminus PRED) \le 2 \cdot w(OPT \setminus PRED)$$

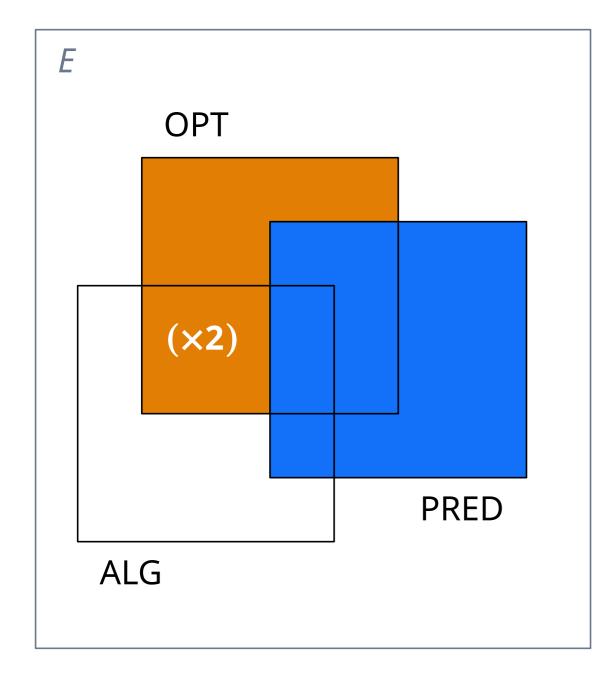
$$w(ALG) \leq w(ALG \cup PRED)$$



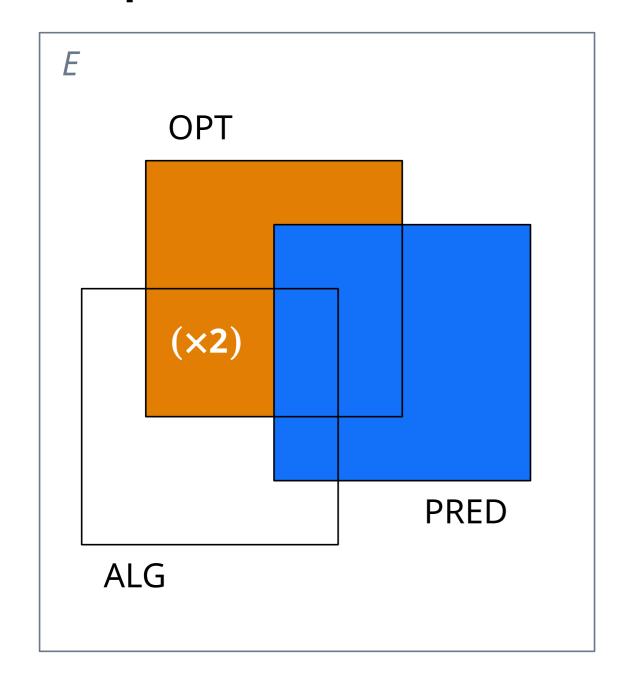
$$\overline{w}(ALG) \leqslant 2 \cdot \overline{w}(OPT)$$
 $w(ALG \setminus PRED) \leqslant 2 \cdot w(OPT \setminus PRED)$

$$w(ALG) \le w(ALG \cup PRED)$$

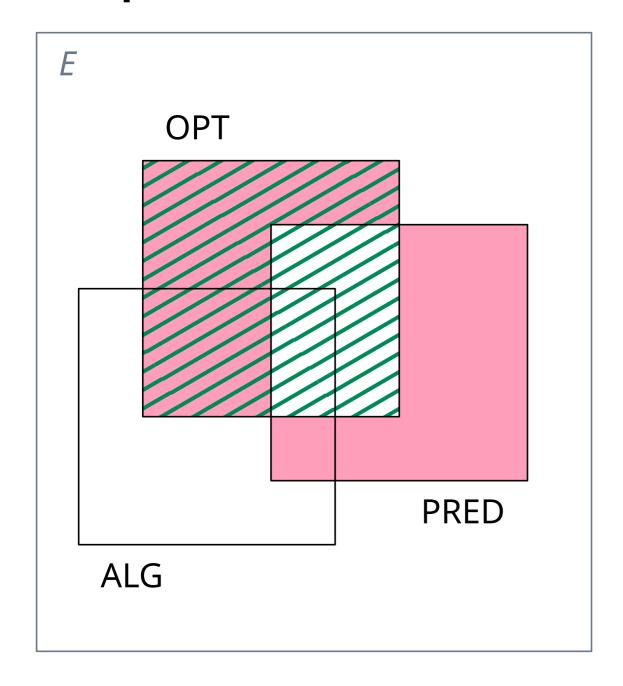
= $w(PRED) + w(ALG \setminus PRED)$



$$\overline{w}(ALG) \le 2 \cdot \overline{w}(OPT)$$
 $w(ALG \setminus PRED) \le 2 \cdot w(OPT \setminus PRED)$
 $w(ALG) \le w(ALG \cup PRED)$
 $= w(PRED) + w(ALG \setminus PRED)$
 $\le w(PRED) + 2 \cdot w(OPT \setminus PRED)$



$$\overline{w}(ALG) \le 2 \cdot \overline{w}(OPT)$$
 $w(ALG \setminus PRED) \le 2 \cdot w(OPT \setminus PRED)$
 $w(ALG) \le w(ALG \cup PRED)$
 $= w(PRED) + w(ALG \setminus PRED)$
 $\le w(PRED) + 2 \cdot w(OPT \setminus PRED)$
 $\le w(PRED \cap OPT) + w(PRED \setminus OPT)$
 $+ w(OPT \setminus PRED) + w(OPT \setminus PRED)$



$$\overline{w}(ALG) \leqslant 2 \cdot \overline{w}(OPT)$$
 $w(ALG \setminus PRED) \leqslant 2 \cdot w(OPT \setminus PRED)$
 $w(ALG) \leqslant w(ALG \cup PRED)$
 $= w(PRED) + w(ALG \setminus PRED)$
 $\leqslant w(PRED) + 2 \cdot w(OPT \setminus PRED)$
 $\leqslant w(PRED \cap OPT) + w(PRED \setminus OPT)$
 $+ w(OPT \setminus PRED) + w(OPT \setminus PRED)$
 $= OPT + \eta$

For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

if there is a T(n)-time approximation algorithm with approximation factor 2

For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

if there is a T(n)-time approximation algorithm with approximation factor 2

then there is an O(T(n))-time learning-augmented approximation algorithm with approximation factor $1 + \frac{\eta}{OPT}$

For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

if there is a T(n)-time approximation algorithm with approximation factor 2

then there is an O(T(n))-time **learning-augmented** approximation algorithm with **approximation factor** min $\{2, 1 + \frac{\eta}{OPT}\}$

For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

if there is a T(n)-time approximation algorithm with approximation factor ρ

then there is an O(T(n))-time learning-augmented approximation algorithm with approximation factor $\min\{\rho, 1 + \frac{\eta_+ + (\rho-1) \cdot \eta_-}{\rho}\}$ $= w(OPT \setminus PRED)$ $= \frac{\eta_+}{\rho} := w(PRED \setminus OPT)$

Applications

- (Minimum Weight) Steiner Tree
- (Minimum Weight) Vertex Cover
- Minimum Weight Perfect Matching in Metric Graphs
- ► (Maximum Weight) Clique (a similar general theorem for maximization problems)
- Knapsack
- ► [place for your favorite problem]

Applications

- (Minimum Weight) Steiner Tree
- (Minimum Weight) Vertex Cover

For Vertex Cover and Clique, our dependence on η is **best possible** under Unique Games Conjecture

- Minimum Weight Perfect Matching in Metric Graphs
- (Maximum Weight) Clique

► Knapsack

► [place for your favorite problem]

(a similar general theorem for **maximization** problems)

- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction **PRED** $\subseteq E$
- reate new weight function $\overline{\boldsymbol{w}}(\boldsymbol{e}) = \begin{cases} \boldsymbol{0}, & \text{if } \boldsymbol{e} \in \mathsf{PRED} \\ w(\boldsymbol{e}), & \text{otherwise} \end{cases}$
- run the (near-)linear time **2-approximation** on (G, \overline{w}, T)
- return what it returned

- ▶ choose $\alpha \ge 1$
- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction **PRED** $\subseteq E$
- right representation $\bar{w}(e) = \begin{cases} w(e)/\alpha, & \text{if } e \in PRED \\ w(e), & \text{otherwise} \end{cases}$
- run the (near-)linear time **2-approximation** on (G, \overline{w}, T)
- return what it returned

- ► choose α ≥ 1
- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction **PRED** $\subseteq E$
- reate new weight function $\bar{w}(e) = \begin{cases} w(e)/\alpha, & \text{if } e \in PRED \\ w(e), & \text{otherwise} \end{cases}$
- run the (near-)linear time **2-approximation** on (G, \overline{w}, T)
- return what it returned

Idea: protect against heavy false positives

- ▶ choose $\alpha \ge 1$
- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction **PRED** $\subseteq E$
- right representation $\bar{w}(e) = \begin{cases} w(e)/\alpha, & \text{if } e \in PRED \\ w(e), & \text{otherwise} \end{cases}$
- run the (near-)linear time **2-approximation** on (G, \overline{w}, T)
- return what it returned

Idea: protect against heavy false positives

Claim: $w(ALG) \leq (1 + \frac{1}{\alpha}) \cdot OPT + \eta_+ + (1 - \frac{1}{\alpha}) \cdot \eta_-$

- ▶ choose $\alpha \ge 1$
- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction **PRED** $\subseteq E$
- reate new weight function $\bar{w}(e) = \begin{cases} w(e)/\alpha, & \text{if } e \in PRED \\ w(e), & \text{otherwise} \end{cases}$
- run the (near-)linear time **2-approximation** on (G, \overline{w}, T)
- return what it returned

Idea: protect against heavy false positives

Claim: $w(ALG) \leq (1 + \frac{1}{\alpha}) \cdot OPT + \eta_+ + (1 - \frac{1}{\alpha}) \cdot \eta_-$

Issue: in terms of η_+ , η_- it only makes sense to choose $\alpha \in \{1, \infty\}$

- ightharpoonup choose $\alpha \geqslant 1$
- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction **PRED** $\subseteq E$
- reate new weight function $\bar{w}(e) = \begin{cases} w(e)/\alpha, & \text{if } e \in PRED \\ w(e), & \text{otherwise} \end{cases}$
- run the (near-)linear time **2-approximation** on (G, \overline{w}, T)
- return what it returned

Idea: protect against heavy false positives

Claim: $w(ALG) \leq (1 + 1/\alpha) \cdot OPT + (\alpha - 1) \cdot \sum_{p \in P} w(p) + (1 - 1/\alpha) \cdot \eta_{-}$ $P := |PRED \setminus OPT| \text{ most expensive paths of}$

MST of *T*-induced subgraph of metric closure of *G*

▶ Dataset from 2018 PACE Challenge: 200 graphs (with weights and terminals)

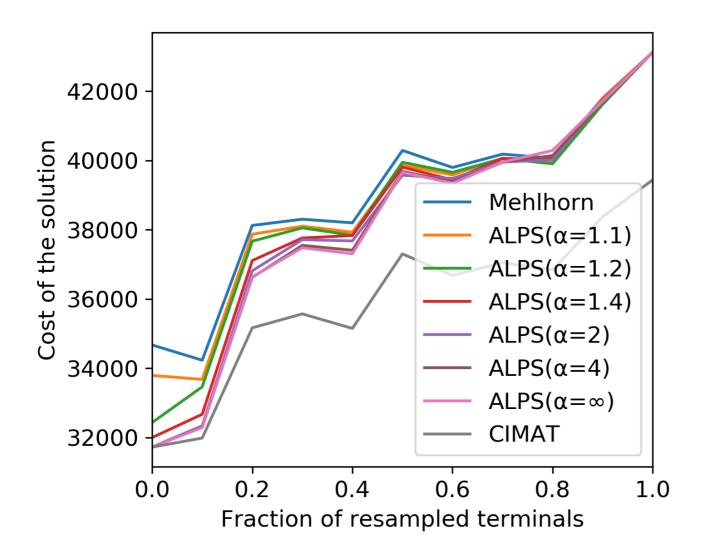
- Dataset from 2018 PACE Challenge: 200 graphs (with weights and terminals)
- Winning solver: CIMAT
 - ► Iterative (genetic) algorithm
 - Designed to run 30 minutes on each graph
 - ► Outputs **1.01 · OPT** within **60 seconds** on 95% of graphs

- Dataset from 2018 PACE Challenge: 200 graphs (with weights and terminals)
- Winning solver: CIMAT
 - ► Iterative (genetic) algorithm
 - Designed to run 30 minutes on each graph
 - ► Outputs **1.01 · OPT** within **60 seconds** on 95% of graphs
- ► Mehlhorn's $O(E + V \log V)$ -time 2-approximation algorithm
 - ► Runs **< 500 milliseconds** on every graph
 - Mean empirical approximation factor: 1.17

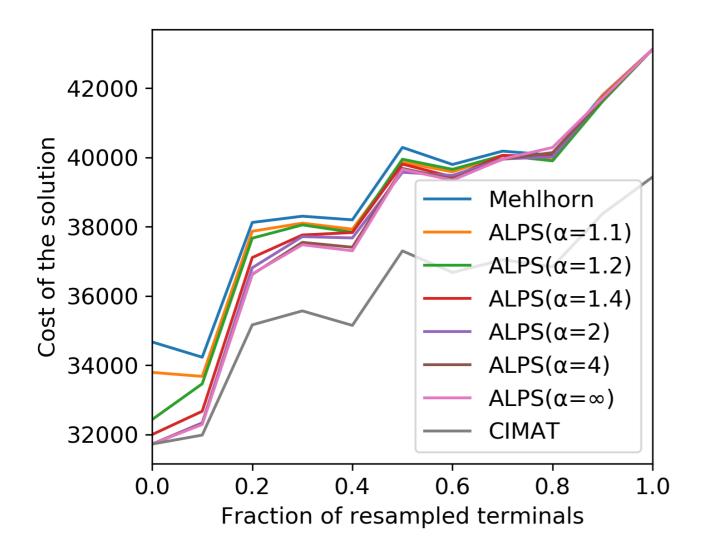
- Dataset from 2018 PACE Challenge: 200 graphs (with weights and terminals)
- Winning solver: CIMAT
 - ► Iterative (genetic) algorithm
 - Designed to run 30 minutes on each graph
 - ► Outputs **1.01 · OPT** within **60 seconds** on 95% of graphs
- ► Mehlhorn's $O(E + V \log V)$ -time 2-approximation algorithm
 - ► Runs **< 500 milliseconds** on every graph
 - Mean empirical approximation factor: 1.17
- ightharpoonup Each instance (graph, weights, terminals) \rightarrow distribution over instances
 - Keep the graph and weights fixed
 - ▶ Choose $p \in [0, 1]$, resample p-fraction of terminals uniformly from all nodes

- Dataset from 2018 PACE Challenge: 200 graphs (with weights and terminals)
- Winning solver: CIMAT
 - ► Iterative (genetic) algorithm
 - Designed to run 30 minutes on each graph
 - ► Outputs **1.01 · OPT** within **60 seconds** on 95% of graphs
- ► Mehlhorn's $O(E + V \log V)$ -time 2-approximation algorithm
 - ► Runs **< 500 milliseconds** on every graph
 - Mean empirical approximation factor: 1.17
- ightharpoonup Each instance (graph, weights, terminals) \rightarrow distribution over instances
 - Keep the graph and weights fixed
 - ▶ Choose $p \in [0, 1]$, resample p-fraction of terminals uniformly from all nodes
- Leave-one-out cross-validation (10 samples from each distribution)
 - ► Learning = empirical risk minimization (edge-wise majority vote)

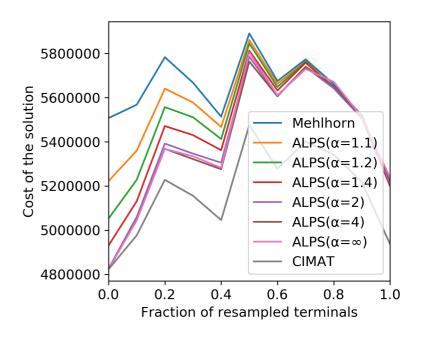
Results on individual instances

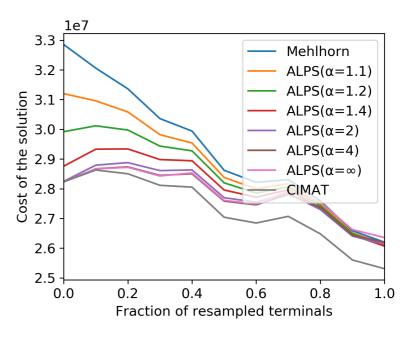


distribution made form graph 001



distribution made form graph 001

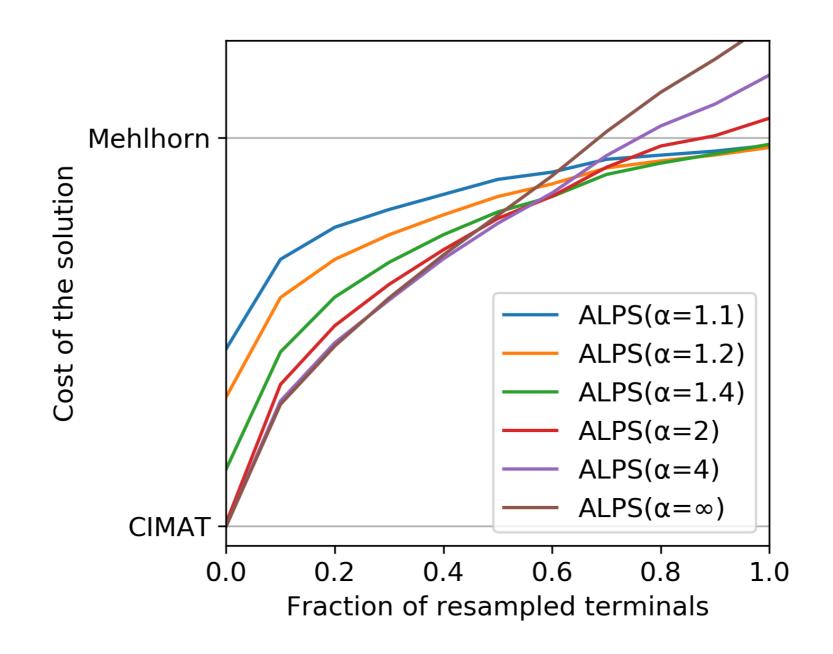




graph 082

graph 178

Results after normalizing and averaging over all instances



Max Cut with ϵ -accurate predictions

[Cohen-Addad, d'Orsi, Gupta, Lee, Panigrahi '24]

Input:

- ightharpoonup undirected graph G = (V, E)
- ▶ edge weights $w : E \to \mathbb{R}_{\geq 0}$

Output:

▶ labels $\ell: V \to \{-1, 1\}$ maximizing $\sum_{(u,v) \in E, \ell(u) \neq \ell(v)} w(u, v)$

Max Cut with ϵ -accurate predictions

[Cohen-Addad, d'Orsi, Gupta, Lee, Panigrahi '24]

Input:

- ▶ undirected graph G = (V, E)
- ▶ edge weights $w : E \to \mathbb{R}_{\geq 0}$

Prediction:

▶ labels $\hat{\ell}: V \to \{-1, 1\}$, $\Pr[\hat{\ell}(v) = \ell(v)] = \frac{1}{2} + \varepsilon$ (independently!)

Output:

▶ labels $\ell: V \to \{-1, 1\}$ maximizing $\sum_{(u,v) \in E, \ell(u) \neq \ell(v)} w(u, v)$

Max Cut with ϵ -accurate predictions

[Cohen-Addad, d'Orsi, Gupta, Lee, Panigrahi '24]

Input:

- ▶ undirected graph G = (V, E)
- ▶ edge weights $w : E \to \mathbb{R}_{\geq 0}$

Prediction:

▶ labels $\hat{\ell}: V \to \{-1, 1\}$, $\Pr[\hat{\ell}(v) = \ell(v)] = \frac{1}{2} + \varepsilon$ (independently!)

Output:

▶ labels $\ell: V \to \{-1, 1\}$ maximizing $\sum_{(u,v) \in E, \ell(u) \neq \ell(v)} w(u, v)$

Result: $(\alpha + \tilde{\Omega}(\varepsilon^4))$ -approximation (in polynomial time)

best approximation factor of a classical algorithm ≈ 0.878

Learning-augmented k-means clustering

[Ergun, Feng, Silwal Woodruff, Zhou '22], [Gamlath, Lattanzi, Norouzi-Fard, Svensson '22]

Input:

- ightharpoonup n points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$
- ▶ number of clusters $k \in \mathbb{Z}_+$

Output:

▶ labels ℓ : $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., k\}$ minimizing $\sum_{i=1}^{n} ||x_i - \text{mean}(\{x_j \mid \ell(j) = \ell(i)\})||^2$

Learning-augmented k-means clustering

[Ergun, Feng, Silwal Woodruff, Zhou '22], [Gamlath, Lattanzi, Norouzi-Fard, Svensson '22]

Input:

- ightharpoonup n points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$
- ▶ number of clusters $k \in \mathbb{Z}_+$

Prediction:

▶ labels ℓ : $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., k\}$ consistent with a $(1 + \alpha)$ -approximate clustering on $(1 - \lambda)$ -fraction of points (per cluster)

Output:

▶ labels ℓ : $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., k\}$ minimizing $\sum_{i=1}^{n} ||x_i - \text{mean}(\{x_j \mid \ell(j) = \ell(i)\})||^2$

Learning-augmented k-means clustering

[Ergun, Feng, Silwal Woodruff, Zhou '22], [Gamlath, Lattanzi, Norouzi-Fard, Svensson '22]

Input:

- ightharpoonup n points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$
- ▶ number of clusters $k \in \mathbb{Z}_+$

Prediction:

▶ labels ℓ : $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., k\}$ consistent with a $(1 + \alpha)$ -approximate clustering on $(1 - \lambda)$ -fraction of points (per cluster)

Output:

▶ labels ℓ : $\{1, 2, ..., n\} \rightarrow \{1, 2, ..., k\}$ minimizing $\sum_{i=1}^{n} ||x_i - \text{mean}(\{x_j \mid \ell(j) = \ell(i)\})||^2$

Result: $(1 + \emptyset(\alpha))$ -approximation (in polynomial time)

Are **you** solving similar instances of the same problem each day?

Are **you** solving similar instances of the same problem each day?

Thank you!