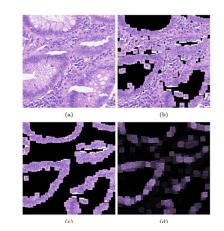
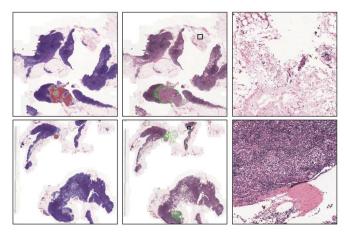


Boltzmann Semantic Score: A Semantic Metric to Evaluate Large Vision Models using Large Language Models

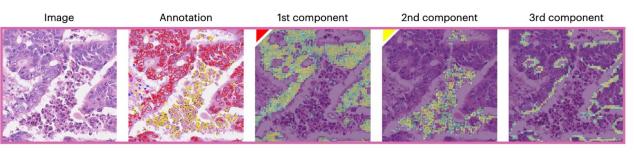
Ali Khajegili Mirabadi, Katherine Rich, Hossein Farahani, Ali Bashashati
The University of British Columbia


Question:

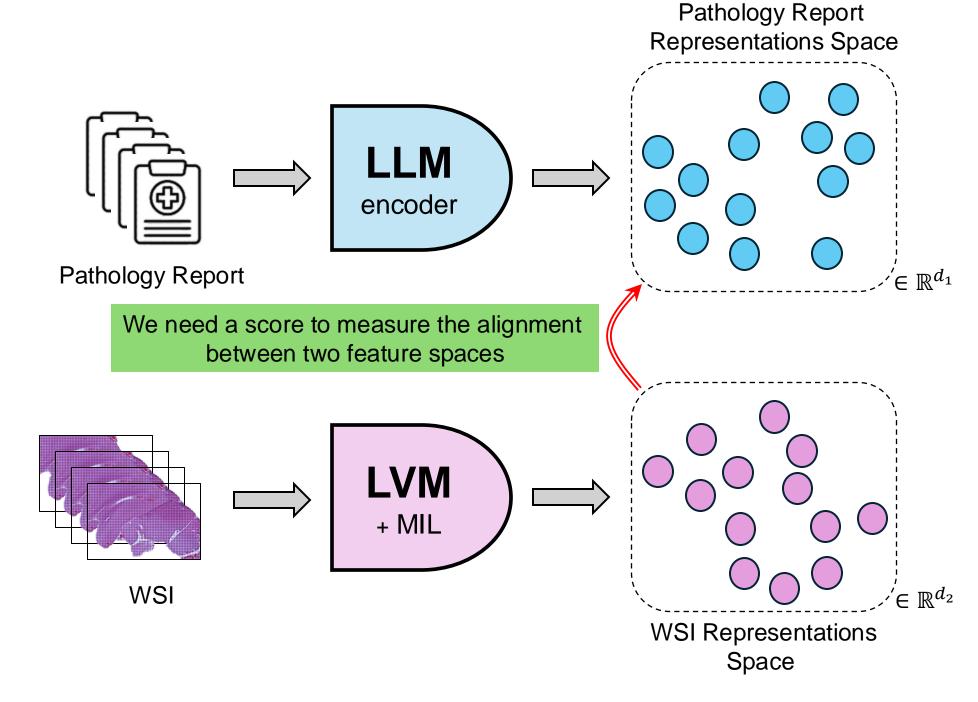

Do Large Vision Models (LVMs) extract **semantically** relevant features similar to those identified by human experts?

What people do now:

- Gradient Visualization or Attention Score Visualization:
 - Comparison with Expert Annotations
 - Expert Evaluations of the Heatmaps


Instance Attention Score Visualization¹

Attention Heatmaps and Comparison with Expert Annotations²


Problems with this approach:

- Subjective
- Subject to Variability
- Small Sample Size
- Limited to Certain Cancers

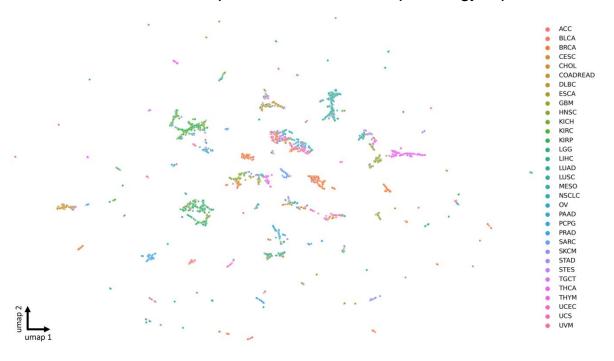
PCA on Tile Features and Compare with Annotations³

Solution:

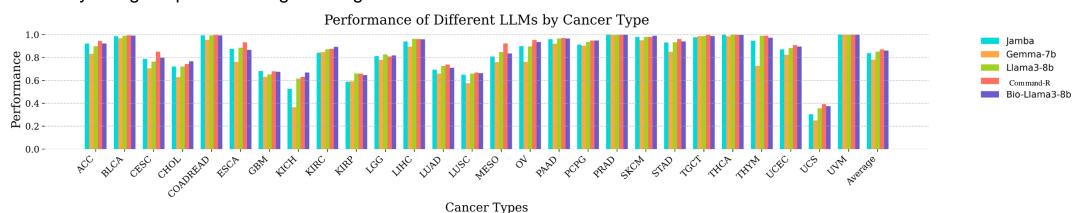
Challenges & Questions:

Q1: Can LLMs encode Pathology Reports properly?

Q2: How to measure the structural similarity of two spaces with non-identical dimensions?


Zero-shot LLM representation in Pathology:

- 5 Tasks with 5 LLMs:
 - ➤ Information Retrieval in Organ-Independent and Organ-Specific settings with original and perturbed texts
 - Survival prediction


The C-index of RSF for Survival Prediction

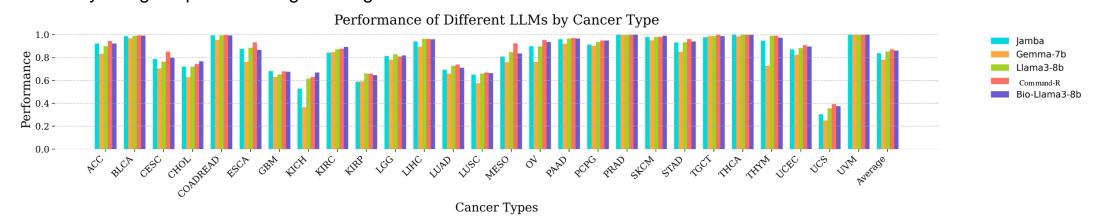
LLM	BRCA	GBM	KIRC	KIRP	LGG	LUAD	LUSC	UCEC
Command-R	$0.622_{\pm 0.02}$	$0.537_{\pm0.03}$	$0.722_{\pm 0.04}$	$0.743_{\pm 0.10}$	$0.643_{\pm 0.05}$	$0.611_{\pm 0.04}$	$0.547_{\pm 0.03}$	$0.602_{\pm 0.08}$
Gemma-7b	$0.603_{\pm0.04}$	$0.512_{\pm 0.03}$	$0.707_{\pm 0.02}$	$0.634_{\pm0.11}$	$0.611_{\pm 0.08}$	$0.570_{\pm0.03}$	$0.543_{\pm 0.04}$	$0.600_{\pm 0.04}$
Jamba	$0.625_{\pm 0.05}$	$0.501_{\pm 0.02}$	$0.689_{\pm0.06}$	$0.745_{\pm 0.09}$	$0.639_{\pm0.06}$	$0.595_{\pm0.06}$	$0.545_{\pm0.01}$	$0.617_{\pm 0.07}$
Llama3-8b	$0.629_{\pm 0.05}$	$0.521_{\pm 0.04}$	$0.713_{\pm 0.03}$	$0.759_{\pm 0.07}$	$0.607_{\pm 0.07}$	$0.585_{\pm 0.07}$	$0.520_{\pm 0.06}$	$0.580_{\pm 0.08}$
Bio-Llama3-8b	$0.627_{\pm 0.07}$	$0.537_{\pm 0.03}$	$0.709_{\pm 0.05}$	$0.726_{\pm 0.08}$	$0.587_{\pm 0.07}$	$0.583_{\pm0.03}$	$0.548_{\pm 0.04}$	$0.621_{\pm 0.04}$
Average	$0.621_{\pm 0.01}$	$0.522_{\pm 0.02}$	$0.708_{\pm 0.01}$	$0.721_{\pm 0.05}$	$0.617_{\pm 0.02}$	$0.589_{\pm0.02}$	$0.541_{\pm 0.01}$	$0.604_{\pm 0.02}$

Command-R UMAP plot of TCGA: ~9,500 pathology reports

LLMs' top-1 accuracy in organ-specific setting with original text

Zero-shot LLM representation in Pathology:

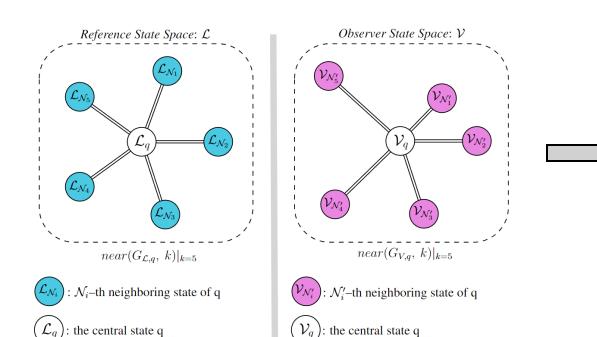
- 5 Tasks with 5 LLMs:
 - Information Retrieval in Organ-Independent and Organ-Specific settings with original and perturbed texts
 - > Survival prediction

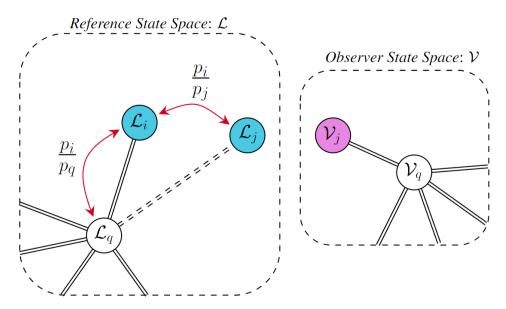

Command-R UMAP plot of TCGA: ~9,500 pathology reports

The C-index of RSF for Survival Prediction

Q1: Can LLMs encode Pathology Reports properly? Answer: Yes, their performance is promising!

LLMs' top-1 accuracy in organ-specific setting with original text



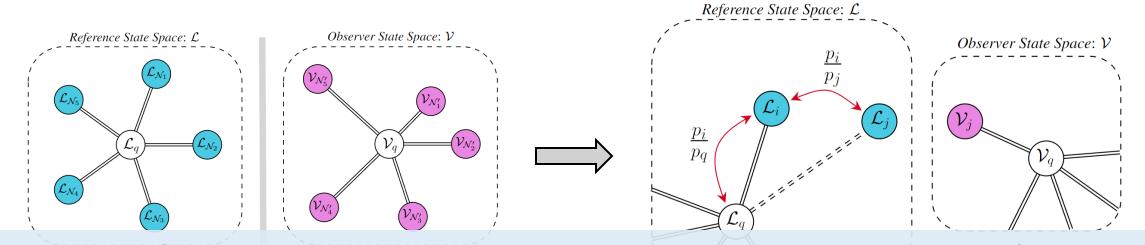

Challenges & Questions:

Q1: Can LLMs encode Pathology Reports properly?

Q2: How to measure the structural similarity of two spaces with non-identical dimensions?

Boltzmann Semantic Score: Theory

 \mathcal{L}_i : the reference matching state

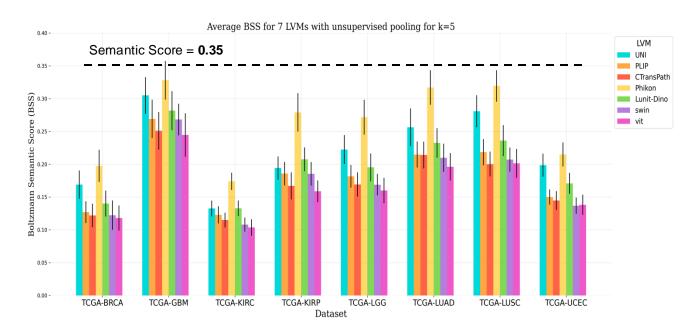

 \mathcal{L}_j : the corresponding non-matching estimated state by Φ in \mathcal{L}

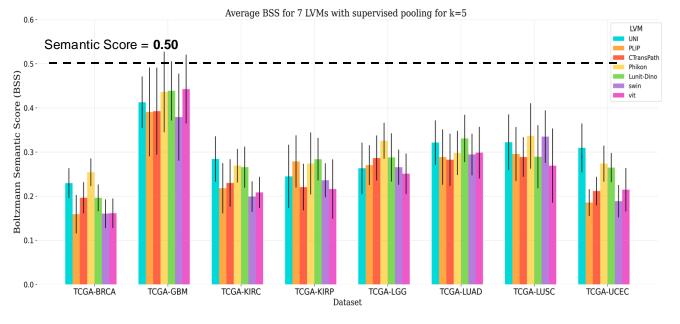
 \mathcal{V}_j : the estimated state j by Φ in $G_{\mathcal{V},q}$

Boltzmann Factor:
$$\frac{p_i}{p_q} = \exp\left(-\frac{\Delta \mathcal{E}}{kT}\right) = \exp\left(-\frac{\|\mathcal{L}_i - \mathcal{L}_q\|_2}{\sqrt{d_1}}\right)$$
Second-order Boltzmann Factor:
$$b_{i;j|q} := \frac{p_i}{p_j} \cdot \frac{p_i}{p_q}$$

$$\mathbf{\mathcal{B}}_q = \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j) \in \mathbb{A} \cup \mathbb{D}} b_{i$$

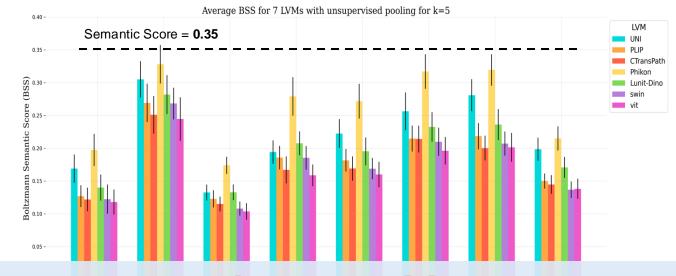
Boltzmann Semantic Score: Theory


Q2: How to measure the structural similarity of two spaces with non-identical dimensions?

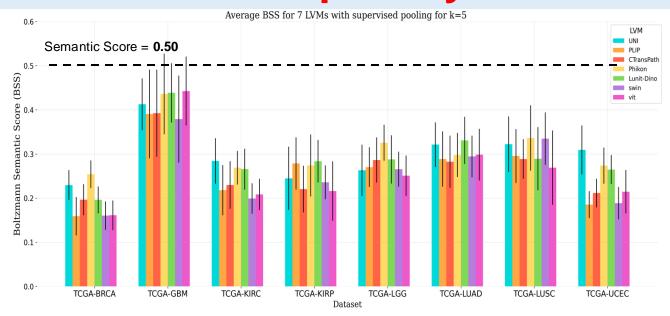

Answer: Boltzmann Semantic Score!

$$\text{Boltzmann Factor:} \quad \frac{p_i}{p_q} = \exp\left(-\frac{\Delta \mathcal{E}}{kT}\right) = \exp\left(-\frac{\|\mathcal{L}_i - \mathcal{L}_q\|_2}{\sqrt{d_1}}\right) \\ \mathcal{B}_q = \frac{\sum\limits_{(i,j)\in\mathbb{A}} b_{i;j|q}}{\sum\limits_{(i,j)\in\mathbb{A}\cup\mathbb{D}} b_{i;j|q}} \\ = \frac{\sum\limits_{(i,j)\in\mathbb{A}\cup\mathbb{D}} b_{i;j|q} - \sum\limits_{(i,j)\in\mathbb{A}\cup\mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j)\in\mathbb{A}\cup\mathbb{D}} b_{i;j|q}} = 1 - \frac{\sum\limits_{(i,j)\in\mathbb{A}\cup\mathbb{D}} b_{i;j|q}}{\sum\limits_{(i,j)\in\mathbb{A}\cup\mathbb{D}} b_{i;j|q}}$$

Boltzmann Semantic Score: Benchmark

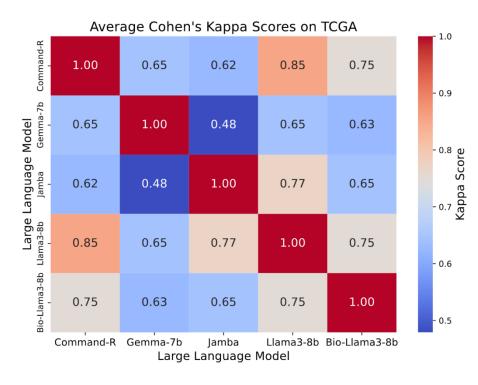

- 7 LVMs were benchmarked using BSS
 - > UNI
 - Phikon
 - > PLIP
 - CTransPath
 - > Lunit-Dino
 - > SwinT
- Two setting for instance aggregation:
 - Supervised Pooling with AbMIL
 - Unsupervised Pooling with Mean-pooling
- The BSS reported here is average on 5 LLMs as the references

Boltzmann Semantic Score: Benchmark


- 7 LVMs were benchmarked using BSS
 - > UNI
 - > Phikon
 - > PLIP
 - CTransPath
 - Lunit-Dino

LVMs suffer from poor semantic capability!

- Two setting for instance aggregation:
 - Supervised Pooling with AbMIL
 - Unsupervised Pooling with Mean-pooling
- The BSS reported here is average on 5 LLMs as the references


Boltzmann Semantic Score: Reliability

Two Experiments:

- ➤ LLMs' consensus in ranking LVMs using Cohen's Kappa
- Downstream task metric predictability

(a) Correlation between BSS and top-1 Accuracy in Information Retrieval

LLM	GBM		KIRC		K	IRP	L	.GG	LUAD		LUSC	
	r	p-value										
Command-R		$4.6e^{-03}$										
Gemma-7b	0.386	$9.6e^{-04}$	0.483	$2.3e^{-05}$	0.475	$3.3e^{-05}$	0.309	$9.2e^{-03}$	0.879	$1.4e^{-23}$	0.459	$6.4e^{-05}$
Jamba		$1.1e^{-02}$										
Llama3-8b		$1.4e^{-02}$										
Bio-Llama3-8b	0.355	$2.6e^{-03}$	0.572	$2.4e^{-07}$	0.323	$6.5e^{-03}$	0.231	$5.5e^{-02}$	0.834	$2.9e^{-19}$	0.575	$1.9e^{-07}$

(b) Correlation between BSS and C-index in Survival Prediction

LLM	BRCA		GBM		KIRC		KIRP		LGG		LUAD		LUSC		UCEC	
	r	p-value	r	p-value	r	p-value	r	p-value	r	p-value	r	p-value	r	p-value	r	p-value
Command-R	0.344	$1.9e^{-11}$	-0.093	$9.6e^{-01}$	0.273	$1.1e^{-07}$	0.150	$2.4e^{-03}$	-0.027	$6.9e^{-01}$	0.233	$5.4e^{-06}$	0.099	$3.2e^{-02}$	0.367	$6.6e^{-13}$
Gemma-7b	500000000000000000000000000000000000000			$7.1e^{-01}$	(5) (6)		C 100 100 100 100									
Jamba				$9.3e^{-01}$												
Llama3-8b				$9.4e^{-01}$												
Bio-Llama3-8b	0.347	$1.2e^{-11}$	-0.087	$9.5e^{-01}$	0.287	$2.3e^{-08}$	0.131	$7.1e^{-03}$	-0.034	$7.4e^{-01}$	0.224	$1.1e^{-05}$	0.112	$1.8e^{-02}$	0.373	$2.9e^{-13}$

Conclusion:

Do Large Vision Models (LVMs) extract **semantically relevant** features similar to those identified by human experts? **Answer**: LVMs suffer from poor semantic capability!

Q1: Can LLMs encode Pathology Reports properly?

Answer: Yes, zero-shot LLMs are promising!

Q2: How to measure the structural similarity of two spaces with non-identical dimensions?

Answer: Yes, Boltzmann Semantic Score!