

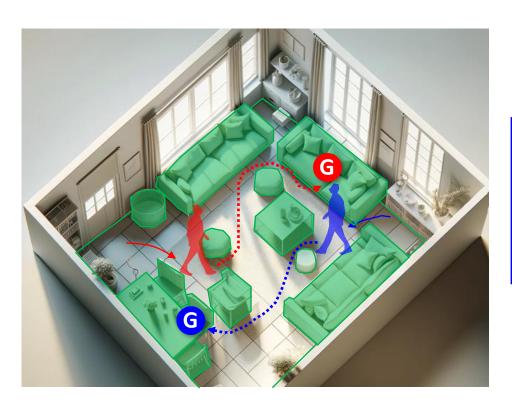
LocoVR: Multiuser Indoor Locomotion Dataset in Virtual Reality

Kojiro Takeyama^{1,2}, Yimeng Liu¹, Misha Sra¹

1: University of California Santa Barbara, 2: Toyota Motor North America

1. Background

 Modeling multi-person trajectories in complex indoor environments is essential for various tasks. (e.g. path planning and motion prediction)



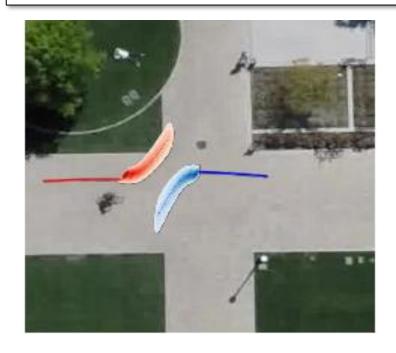
Our goal is to create a comprehensive dataset capturing multi-person trajectories across a variety of indoor environments

- Geometric constraints
- Social constraints

1. Background

Limitations in existing datasets:

Outdoor trajectory datasets

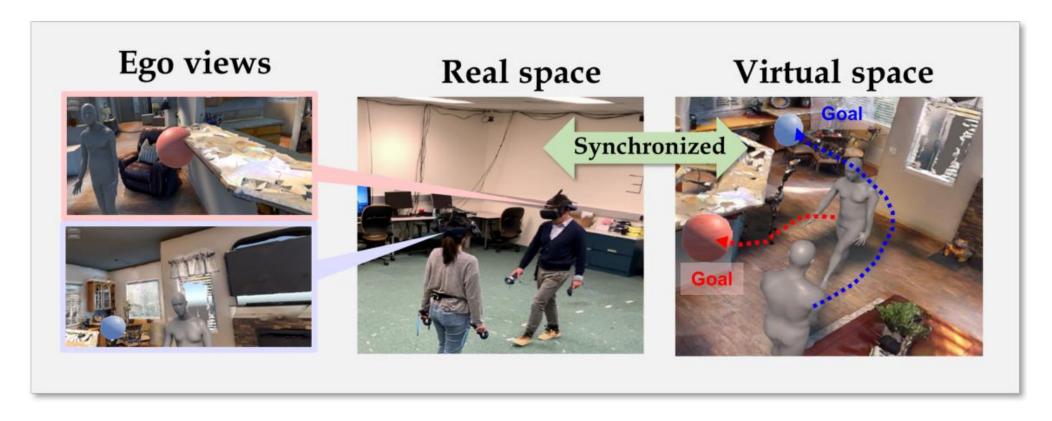


 Scalability and complexity of the scene are different from indoor scenes **Indoor motion datasets**

 Data collection efficiency is low (each scene requires system setup, scene measurement, and human-subject experiments)

2. Our approach

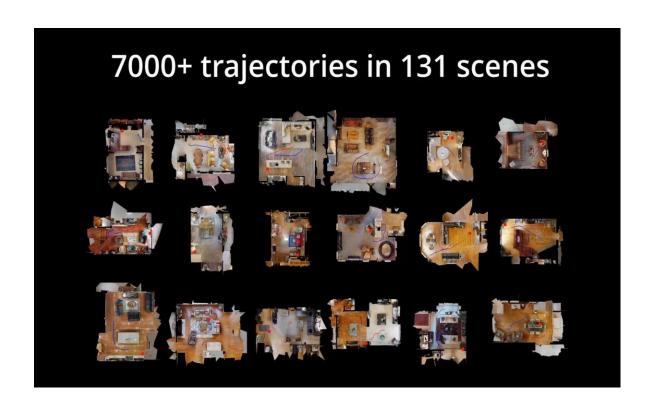
Data collection using VR:



- Efficient data collection
- Accurate and rich scene information

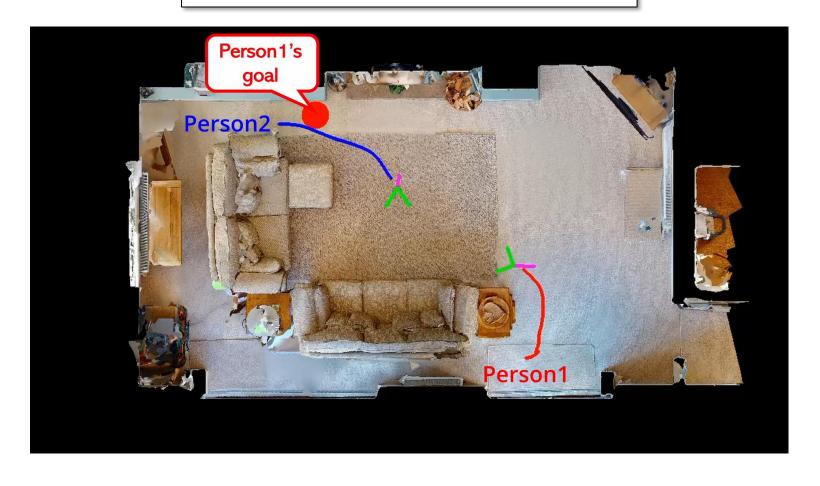
Overview:

- Over 7000 multi-person trajectories in 131 complex indoor home environments
- Rich and accurate scene geometries and accurate body motions including head pose
- Social motion behaviors



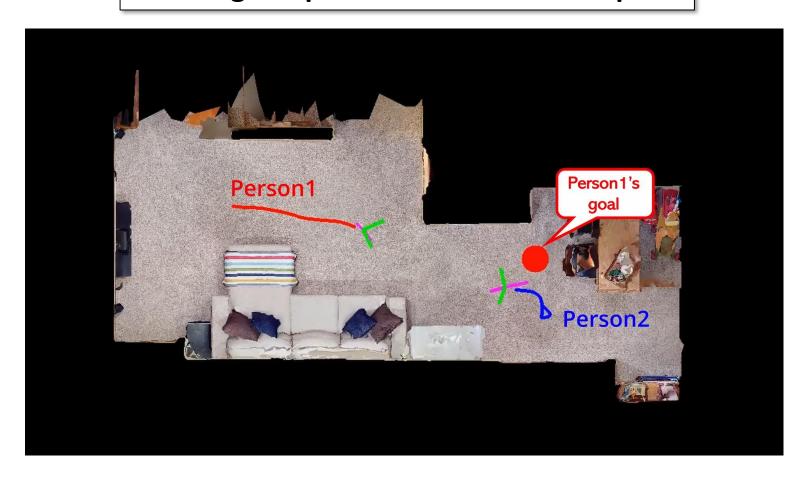
Scene examples:

Maintaining a social distance



Scene examples:

Yielding the path to allow others to pass



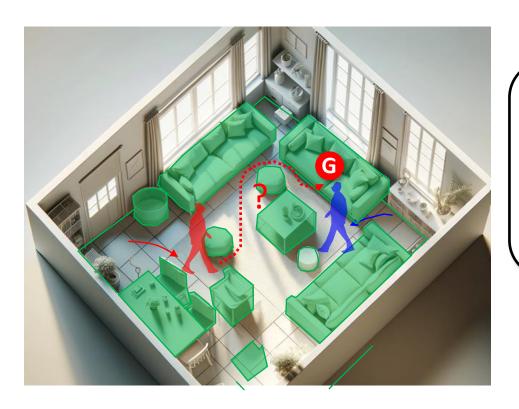
Scene examples:

Taking a detour to avoid others

Dataset benchmark:

Dataset	E	Scene			Subject				
	Frame	\overline{Count}	Geometry	Location	$\overline{Pos/Pose}$	Multi	$Motion^*$	Target-action	
HPS (Guzov et al., 2021)	300K	8	√(3D mesh)	Out/Indoor	3D	✓	Real	Daily actions	
EgoBody (Zhang et al., 2022)	153K	15	√(3D mesh)	Indoor	3D	✓	Real	Daily actions	
PROX (Hassan et al., 2019)	100K	12	√(3D mesh)	Indoor	3D		Real	Daily actions	
GIMO (Zheng et al., 2022)	129K	19	√(3D mesh)	Indoor	3D, Gaze		Real	Daily actions	
Grand Station (Zhou et al., 2012)	50K	1	√(Aerial image)	Outdoor	2D	✓	Real	Trajectory	
SDD (Robicquet et al., 2016)	929K	6	√(Aerial image)	Outdoor	2D	✓	Real	Trajectory	
ETH (Ess et al., 2007)	50K	2	√(Aerial image)	Outdoor	2D	✓	Real	Trajectory	
THOR (Rudenko et al., 2020)	360K	3	√(3D point cloud)	Indoor	2D	✓	Real	Trajectory	
JRDB (Vendrow et al., 2023)	636K	30	√(3D point cloud)	Out/Indoor	3D	✓	Real	Trajectory	
GTA-IM (Cao et al., 2020)	1000K	10	√(3D mesh)	Indoor	3D		Synthetic	Trajectory	
HUMANISE (Wang et al., 2022)	1200K	643	√(3D mesh)	Indoor	3D		Synthetic	Daily actions	
CIRCLE (Araújo et al., 2023)	4300K	9	√(3D mesh)	Indoor	3D		Real	Daily actions	
THOR-MAGNI (Schreiter et al., 2024)	1260K	4	√(3D mesh)	Indoor	3D, Gaze	✓	Real	Trajectory, Daily actions	
LocoVR (Ours)	2500K	131	√(3D mesh)	Indoor	3D, Head	✓	Real	Trajectory, Social motion	

Task1: Global path prediction



Inputs

- Scene map
- Past trajectory
- Goal
- Another person's trajectory

Output

Future trajectory

- Unet + A*
- Ynet

	GIIVIO
TH	OR-MAGN

LocoReal

Test data

LocoVR

Training data

GIMO

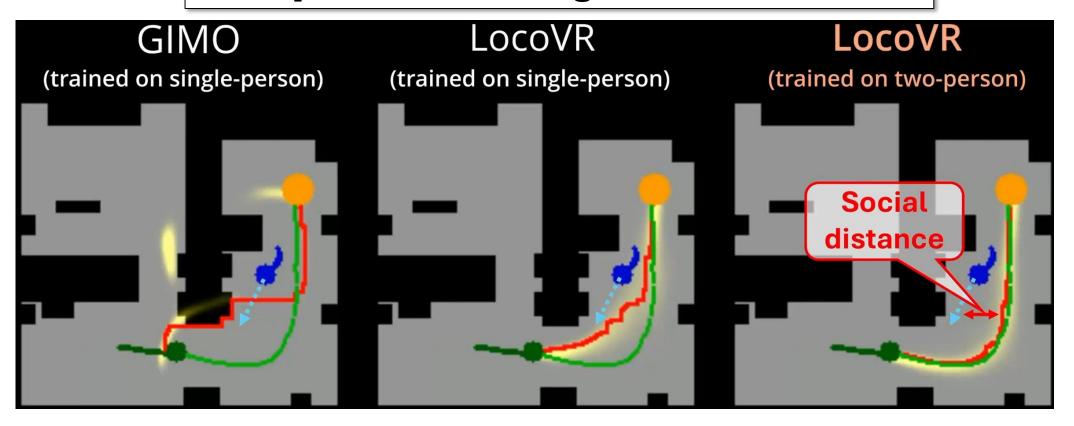
Benchmarks

Task1: Global path prediction

Method	Mean						
	$0m \le d \le 3m$	$3m \leq d \leq 6m$	$6m \le d$	$0m \le d \le 3m$	$3m \leq d \leq 6m$	$6m \le d$	
Ynet (GIMO)	$\textbf{0.08} {\pm 0.003}$	$0.22{\scriptstyle\pm0.012}$	0.51 ± 0.011	$0.17 {\pm 0.003}$	$0.46{\scriptstyle\pm0.022}$	1.11 ± 0.016	Baselines
Ynet (THOR-MAGNI)	0.10 ± 0.003	0.30 ± 0.006	$0.65{\scriptstyle\pm0.014}$	$0.19{\scriptstyle\pm0.004}$	0.56 ± 0.008	1.29 ± 0.023	Daseilles
Ynet (LocoVR)	$0.09{\scriptstyle\pm0.002}$	$0.18{\scriptstyle\pm0.004}$	$0.42{\scriptstyle\pm0.050}$	0.18 ± 0.002	$0.37{\scriptstyle\pm0.005}$	0.92 ± 0.089	Ours
A* + MAP	0.10 ± 0	0.27 ± 0.000	0.40 ± 0.000	0.22 ± 0.000	0.58 ± 0.000	0.89 ± 0.000	
A* + DISTMAP	0.102±0	0.18 ± 0.000	0.26±0.000	0.24±0.000	0.46 ± 0.000	0.66±0.000	
A* + U-Net (GIMO)	0.09 ± 0.002	0.23 ± 0.006	0.36±0.011	0.20 ± 0.004	0.53 ± 0.013	0.84 ± 0.024	Baselines
A* + U-Net (THOR-MAGNI)	0.07 ± 0.001	0.21 ± 0.007	0.30 ± 0.005	0.17 ± 0.001	0.45 ± 0.014	0.71±0.015	
A* + U-Net (LocoVR)	$\textbf{0.06} \!\pm\! 0.001$	$0.12 {\scriptstyle \pm 0.002}$	$0.19{\scriptstyle\pm0.003}$	$0.15{\scriptstyle\pm0.001}$	$0.29 {\scriptstyle \pm 0.004}$	0.50±0.014	Ours

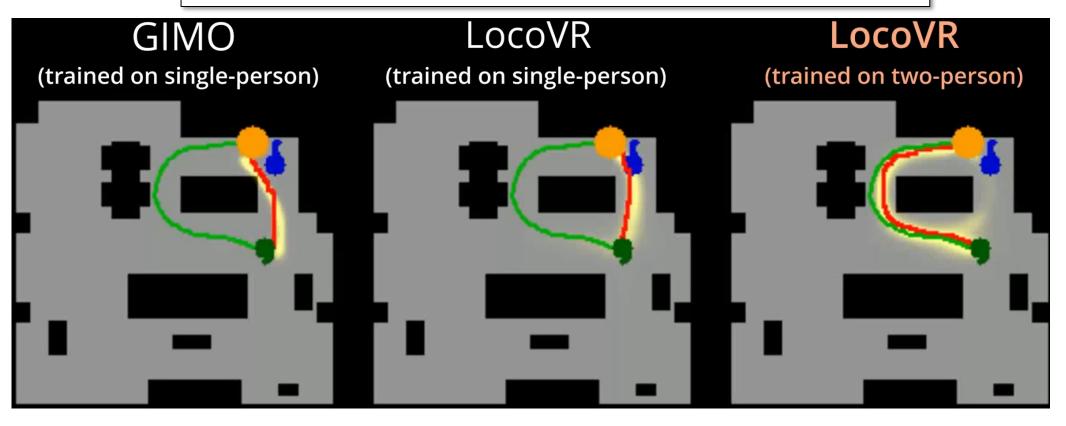
Task1: Global path prediction

Sample1: Maintaining a social distance



Task1: Global path prediction

Sample2: Taking a detour to avoid others



5. Conclusion

 We introduced the LocoVR dataset to model geometrically and socially aware human trajectories, capturing accurate trajectories and detailed spatial information of two-person interactions across 131 indoor home environments.

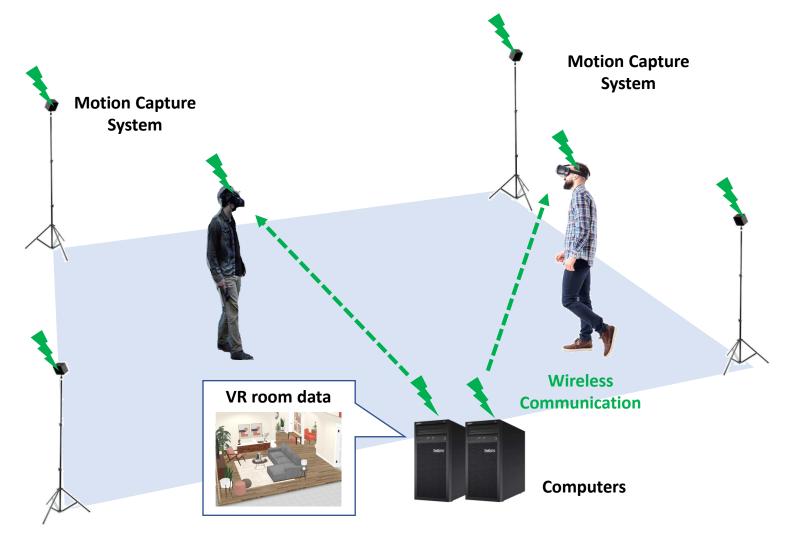
 Experimental results on indoor tasks demonstrated that models trained on LocoVR significantly outperformed those trained on previous indoor datasets, highlighting its effectiveness in adapting to unseen indoor environments.

 These findings also showcase the potential of virtual environments for training generalizable models, establishing a benchmark for future indoor human motion and trajectory research.

Thank you for listening! Visit our website for more information!

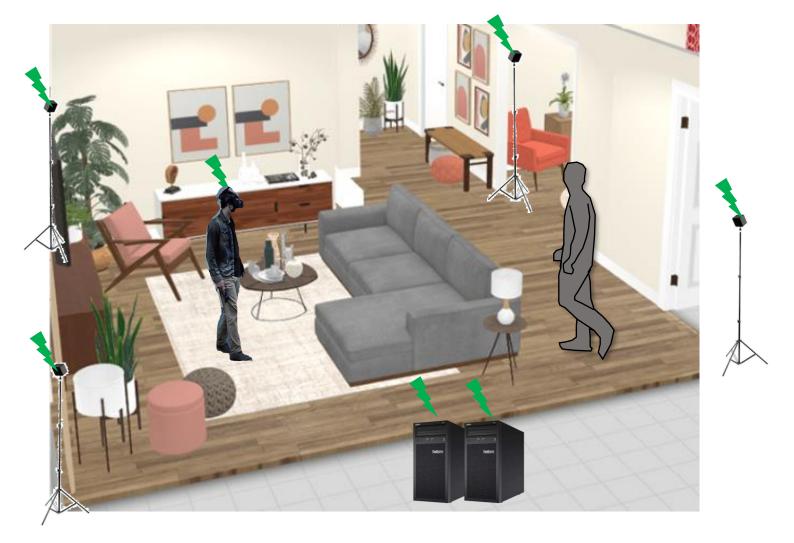
2. Our approach

System setup:

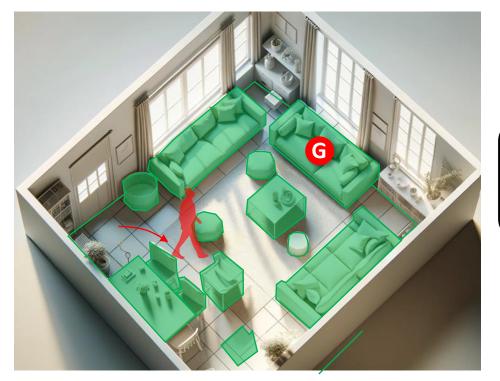


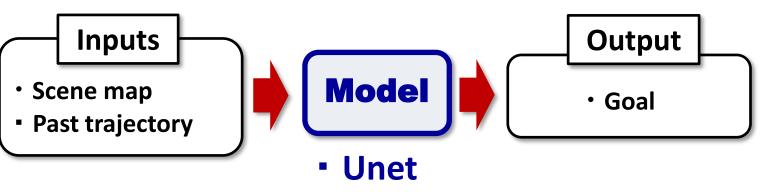
2. Our approach

System setup:



Task2: Goal prediction





Training data	Test data		
GIMO			
THOR-MAGNI	LocoReal		
LocoVR			

Benchmarks

Task2: Goal prediction

Method	Goa	$l\ position\ error$		Object prediction accuracy			
метноа	$0m \le d \le 3m$	$3m \leq d \leq 6m$	$6m \le d$	$0m \le d \le 3m$	$3m \leq d \leq 6m$	$6m \le d$	
RANDOM	3.70±0.02	3.75±0.02	3.76±0.03	15.5±1.0	16.1±0.5	15.3±1.2	
NEAREST	1.76±0.00	3.89±0.00	4.73±0.00	42.7±0.0	0.5±0.0	0.0 ± 0.0	
U-Net (GIMO)	1.58±0.32	2.47±0.06	$3.35{\scriptstyle\pm0.23}$	49.2±6.7	17.8±2.0	3.9±0.8	
U-Net (THOR-MAGNI)	1.82 ± 0.04	3.29 ± 0.04	4.23±0.09	40.1±1.3	18.9 ± 0.6	9.5±1.6	
U-Net (LocoVR)	0.83 ± 0.03	$1.89{\scriptstyle\pm0.02}$	3.45 ± 0.04	$\textbf{72.2} {\pm 2.6}$	40.1±2.0	13.5±2.7	

Baselines

Ours

Task2: Goal prediction

