Beyond Sequence: Impact of Geometric Context for RNA Property Prediction

Junjie Xu ^{1,2 †}, Artem Moskalev ^{1 †}, Tommaso Mansi ¹, Mangal Prakash ^{1 ‡}, Rui Liao ^{1 ‡}

¹ Johnson & Johnson Innovative Medicine, ² The Pennsylvania State University, [†] Shared first, [‡]Shared last

Datasets

	Tc-Ribo	Ribonanza	COVID	Fungal
Dataset Size	Small	Medium	Medium	Large
Task Level	RNA-level	Nucleotide- level	Nucleotide- level	RNA-level
Target	Switching Factor	Degradation	Degradation	Expression
# Sequences	355	2260	4082	7089
Sequence Length	66 - 75	177	107 - 130	150 - 3063
# Labels	1	2	3	1
# Avg. Atoms	1531	3791	2598	N/A

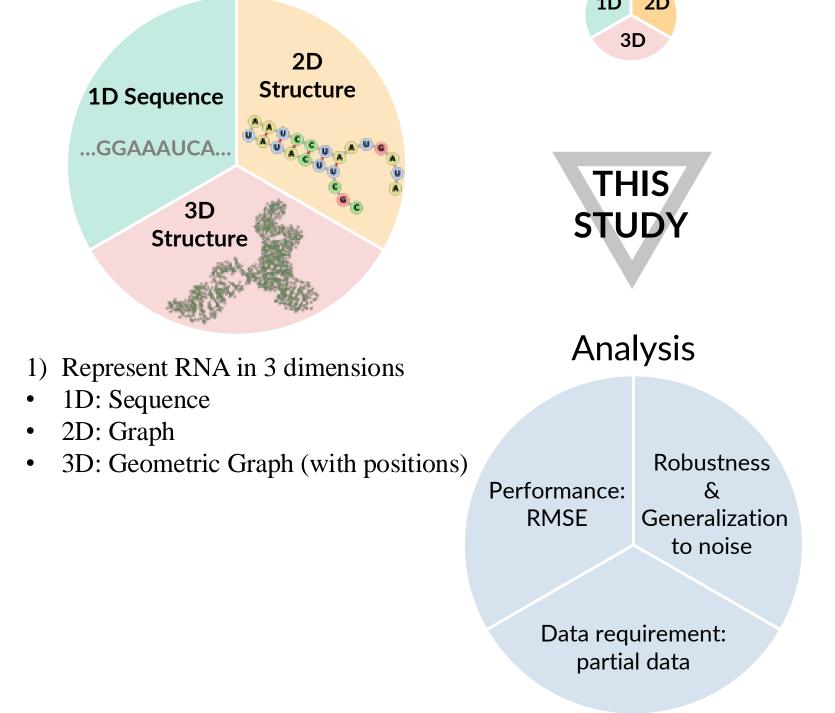
Impact of structural information

Performance:

				2D>3D>			
Model	COVID	Ribonanza	Tc-Ribo	Fungal			
1D model							
Transformer1D	0.361 ± 0.017	0.705 ± 0.015	0.705 ± 0.079	1.417 ± 0.005			
RNA-FM	0.591 ± 0.081	0.990 ± 0.144	0.693 ± 0.001	1.420 ± 0.028			
SpliceBERT	$0.588 {\pm} 0.077$	1.022 ± 0.144	0.708 ± 0.003	$1.435 {\pm} 0.059$			
2D model							
Transformer1D2D	0.305 ± 0.012	0.514 ± 0.004	0.633 ± 0.001	OOM			
GCN	0.359 ± 0.009	0.595 ± 0.006	0.701 ± 0.004	1.192 ± 0.077			
GAT	0.315 ± 0.006	0.534 ± 0.006	0.685 ± 0.024	1.112 ± 0.035			
ChebNet	0.279 ± 0.007	0.468 ± 0.002	0.621 ± 0.022	0.973 ± 0.003			
Graph Transformer	0.318 ± 0.008	0.515 ± 0.001	0.710 ± 0.041	1.317 ± 0.002			
GraphGPS	0.332 ± 0.013	0.523 ± 0.003	0.715 ± 0.012	1.025 ± 0.081			
3D model (without pooling)							
EGNN	0.480 ± 0.025	0.808 ± 0.023	0.725 ± 0.002	OOM			
SchNet	0.499 ± 0.003	0.843 ± 0.004	0.696 ± 0.008	OOM			
FAENet	0.486 ± 0.010	0.834 ± 0.003	0.703 ± 0.011	OOM			
DimeNet	0.497 ± 0.012	0.855 ± 0.006	0.712 ± 0.004	OOM			
GVP	0.467 ± 0.010	0.797 ± 0.012	0.744 ± 0.004	OOM			
FastEGNN	0.477 ± 0.005	0.816 ± 0.014	0.753 ± 0.001	OOM			
3D model (with nucleotide pooling)							
EGNN (pooling)	0.364 ± 0.003	0.619 ± 0.007	0.663 ± 0.010	OOM			
SchNet (pooling)	0.390 ± 0.006	0.685 ± 0.006	0.655 ± 0.038	OOM			
FastEGNN (pooling)	0.444 ± 0.003	0.753 ± 0.015	0.710 ± 0.011	OOM			

Overview

New RNA datasets with 1D, 2D, and 3D structures enable diverse tasks simulating real-world scenarios and evaluating 1D, 2D, and 3D baselines.



2) Models for 1D, 2D, and 3D:

Models

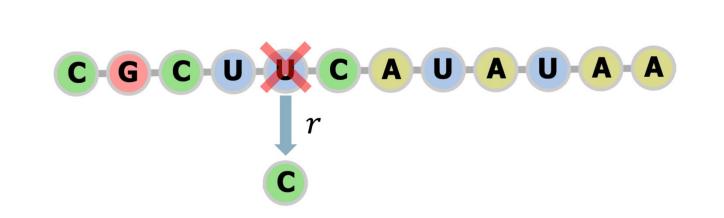
- 1D Model: Transformer
- 2D Model: GNN
- 3D Model: Geometric GNN

- 3) Different tasks for different real-world scenarios
- impact of structural information in clean and ideal settings
- The process of acquiring RNA may have noises and errors
- data is limited

Noisy Data: Generalization & Robustness

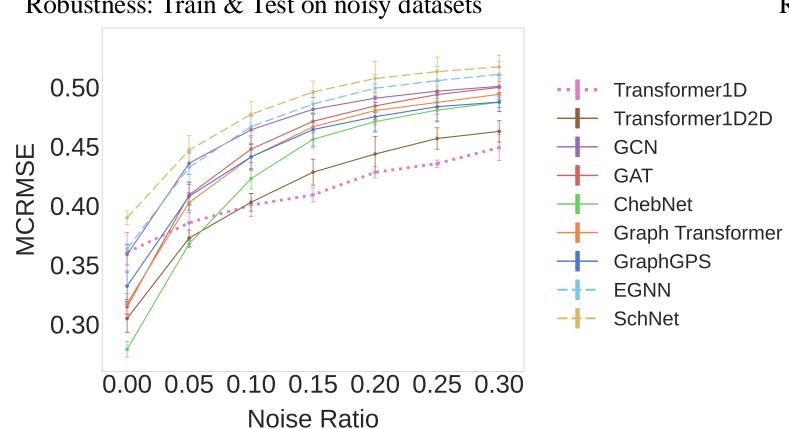
RNA

RNA is particularly susceptible to sequencing noise due to variability in platforms and quality.



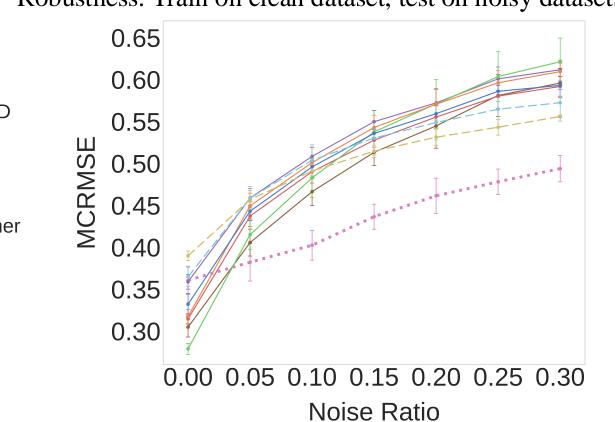
Mutate the nucleotide at each position independently with the probability r.

Robustness: Train & Test on noisy datasets



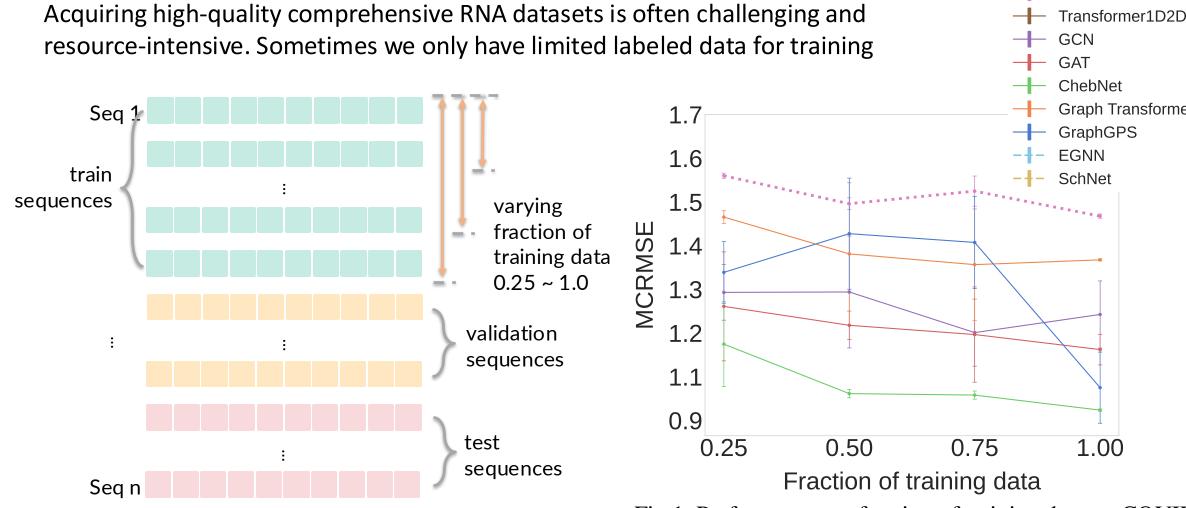
- Transformer1D shows the least performance drop under increasing noise, maintaining the highest accuracy.
- In contrast, 2D and 3D models, particularly ChebNet and 3D models, are more impacted by noise.

Robustness: Train on clean dataset, test on noisy datasets



- Transformer1D outperforms other models on noisy sequences, achieving the lowest RMSE at higher noise levels.
- Transformer1D2D follows closely, showing that transformerbased models generalize better under noise than 2D and 3D models, especially in tasks with geometric representations.

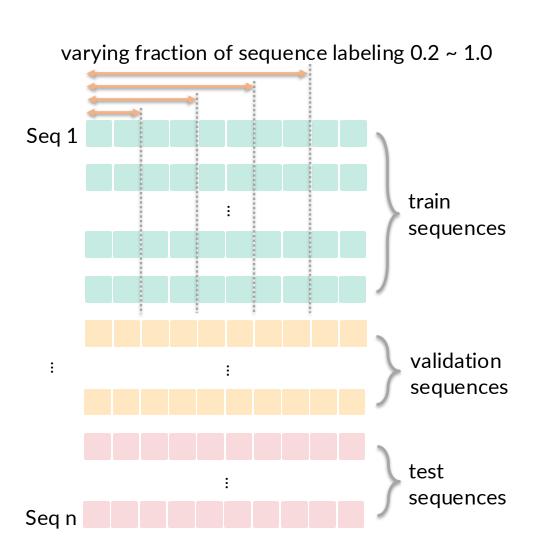
Model Efficiency in Limited Training Data Settings



- Fig 1. Performance vs. fraction of training data on COVID
- 2D models excel in low data regimes 3D models outperform 1D model

Model Efficiency in Limited Training Data Settings

Due to the high cost of measuring properties for every nucleotide in RNA sequence, real-world datasets often contain partial annotations where labels are only available for the first small part of the sequence.



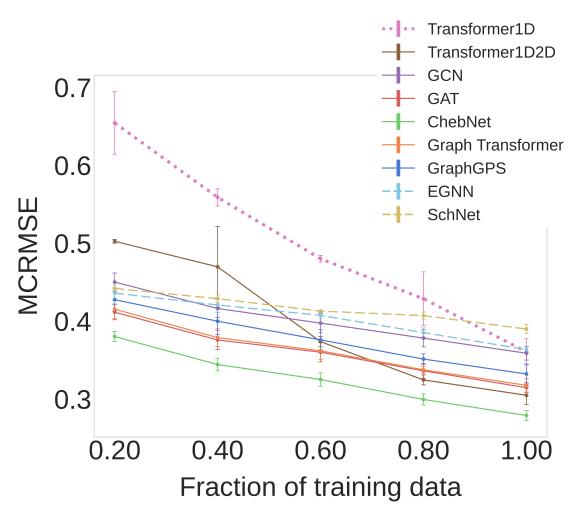


Fig 2. Performance vs. partial property labels on COVID.

- 2D models excel in partial label regimes
- 3D models outperform 1D model

Contact: junjiexu@psu.edu Amoskal2@its.jnj.com MPraka12@its.jnj.com

