Controllable Unlearning for Image-to-Image Generative Models via ε -Constrained Optimization

Xiaohua Feng^{1,*}, Yuyuan Li^{2,*}, Chaochao Chen^{1,†}, Li Zhang¹, Longfei Li³, Jun Zhou³, Xiaolin Zheng¹

Zhejiang University¹, Hangzhou Dianzi University², Ant Group³

2025.4.26

Table of Contents

Background

Methodology

Experiments

Takeaways

References

Privacy Concerns in Recommender Systems:

Existing problem:

- Generative models absorb biases and expose private information from large datasets.
- Generative models recall training instances, raising bias and privacy concerns.
- Personal information is entitled to the right to be forgotten.

Naive solution: Single-objective optimization that combines performance on both forget and retain sets.

Controllable Unlearning for Image-to-Image Generative Models via ε -Constrained Optimization

121 Generative Models

Image-to-Image (I2I) generative models, including AEs, GANs, and diffusion models, are used for tasks like style transfer, each with varying strengths and challenges.

Figure: An example of style transfer in I2I translation [1].

I2I models use encoder-decoder structures, with E_{γ} mapping images to latent space and D_{ϕ} reconstructing them. For model I_{θ} with input x, the output is:

$$I_{\theta}(x) = D_{\phi}(E_{\gamma}(\mathcal{T}(x))) \tag{1}$$

121 Generative Model Unlearning

Unlearning objective: To obtain a model I_{θ} that fails on D_f while maintaining performance on D_R with KL divergence used to measure the distributional distance, formulated as:

$$\max_{\theta} Div(\mathbb{P}_{X_f}||\mathbb{P}_{\hat{X}_f}), \text{ and } \min_{\theta} Div(\mathbb{P}_{X_r}||\mathbb{P}_{\hat{X}_r}), \tag{2}$$

Definition: 121 generative model's inability to reconstruct a full image from a partial one [2].

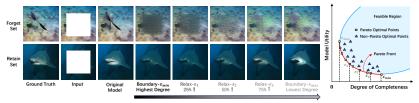


Figure: An overview of generative model unlearning.

Background

- ► *Inception Score (IS)*. Assesses the quality of generated images independently.
- Frechét Inception Distance (FID). Measures similarity between generated and ground truth images.
- Cosine Similarity of CLIP Embeddings. Assesses whether the generated images capture similar semantics to the ground truth images.

Controllable Unlearning for Image-to-Image Generative Models via ε -Constrained Optimization

Pareto Optimality

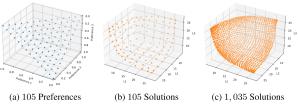


Figure: Pareto Set Approximation in Multi-Objective Optimization [3].

In a multi-objective optimization problem:

- 1. **Pareto dominance:** θ^{a} dominates θ^{b} if $f_{i}(\theta^{a}) \leq f_{i}(\theta^{b})$ for all i, and for some j, $f_{j}(\theta^{a}) < f_{j}(\theta^{b})$.
- 2. **Pareto optimal:** A point θ^* is Pareto optimal if no other point $\hat{\theta}$ dominates it.

The collection of Pareto optimal points forms the Pareto set, and its projection in the objective space is the Pareto front.

A Controllable Unlearning Framework

Methodology

0000

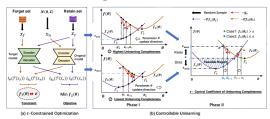


Figure: Pipeline of the controllable unlearning framework.

Phase I: Boundaries of Unlearning: We solve for two boundary solutions: the highest and the lowest unlearning completeness. The highest completeness is formulated as:

$$\min_{\theta \in \mathbb{R}^d} f_2(\theta) \quad \text{s.t.} \quad f_1(\theta) \le f_1^* \tag{3}$$

 f_1^* is the infimum of $f_1(\theta)$.

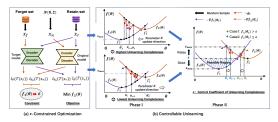


Figure: Pipeline of the controllable unlearning framework.

Phase II: Controllable Unlearning: The unlearning constraint is relaxed by adjusting ε between f_1^* and f_2^* , controlling unlearning completeness. The problem is reformulated as:

$$\min_{\theta \in \mathbb{R}^d} f_2(\theta)$$
 s.t. $f_1(\theta) \le \varepsilon$ (4)

Solution to ε -Constrained Optimization Problem

A gradient-based optimization method is used to solve the ε -constrained optimization problem. The update rule is:

$$\theta_{t+1} \leftarrow \theta_t - \mu_t g_t \tag{5}$$

where g_t is determined by solving the following convex quadratic programming problem:

$$g_t = \min_{g \in \mathbb{R}^d} \left\{ \|\nabla f_2(\theta_t) - g\|^2 \quad \text{s.t.} \quad \nabla f_1(\theta_t)^\top g \ge f_1(\theta_t) - \varepsilon \right\}. \quad (6)$$

Unlearning Performance

Figure: Generated images of cropping 50% at the center of the image on VQ-GAN.

From left to right, the images generated by baselines are presented. Our method results in the highest degree of unlearning completeness while maintaining a minimal reduction in model utility.

Controllability of Unlearning

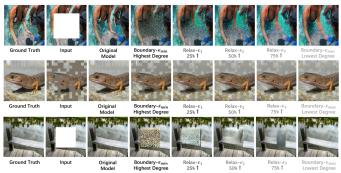


Figure: Controllability performance of our unlearning framework using VQ-GAN (above), MAE (middle), and the diffusion model (below).

The results in Figure 6 indicate that our method can effectively control the completeness of unlearning in image inpainting tasks as well as image reconstruction tasks.

Unlearning Efficiency

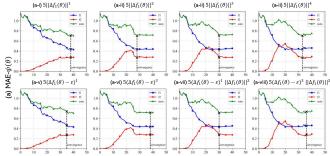


Figure: The convergence rates under different control functions $\psi(\theta)$ using VQ-GAN. Each section contains two rows, corresponding to Phase I and Phase II, respectively. The titles on each subplot indicate the forms of the control function $\psi(\theta)$.

In Phase I, the optimal parameter is $\delta = 2$, while in Phase II, the optimal parameter is $\delta = 1$ for the fastest convergence rate.

Takeaways

- Controllable Unlearning. We reformulate machine unlearning as a ε -constrained optimization, with unlearning the forget set as a constraint, ensuring optimal theoretical solutions.
- ▶ Pareto Optimal Solutions. By progressively relaxing the unlearning constraint, we obtain a Pareto set and plot the corresponding Pareto front, using gradient-based methods to solve the optimization problem.
- **Experimental Validation.** Experiments on large 121 generative models show our method outperforms baselines, offering controllable unlearning that balances user expectations and model utility.

Takeaways

References

Background

Pang, Y., Lin, J., Qin, T. and Chen, Z. (2022). Image-to-Image Translation: Methods and Applications. IEEE Transactions on Multimedia, 24, pp.3859-3881.

Guihong Li, Hsiang Hsu, Radu Marculescu, et al. Machine unlearning for image-to-image generative models. In International Conference on Learning Representations (ICLR), 2024.

Lin, X., Yang, Z. and Zhang, Q. (2022). Pareto Set Learning for Neural Multi-objective Combinatorial Optimization. [online] arXiv.org.