Enhancing Zeroth-order Algorithm in LLM Fine-tuning with Low-rank Structures

Yiming Chen¹, Yuan Zhang¹, Liyuan Cao², Kun Yuan¹, Zaiwen Wen¹

¹Peking University ²Nanjing University

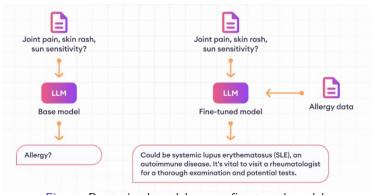
https://github.com/optsuite/LOZO

Outline

- 1 LLM Fine-tuning
- Zeroth-order Algorithm in LLMs
- 3 LOZO Algorithm Framework
- 4 Theoretical Analysis
- 5 Numerical Experiments

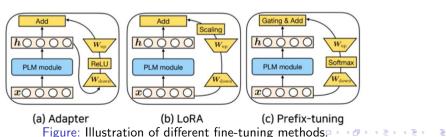
Introduction to LLM Fine-Tuning

- Large Language Models (LLMs) are pre-trained on massive datasets to understand and generate human language.
- Fine-tuning adapts these pre-trained models to specific tasks or domains, improving their performance on narrower, more targeted use cases.



Common Methods for LLM Fine-tuning

- Full Fine-tuning (FT): Updates all model parameters.
- Adapter: Adds lightweight adapter modules to each transformer layer while keeping the original model weights frozen. Reduces training time and memory consumption.
- LoRA (Low-Rank Adaptation): Introduces low-rank matrices for efficient adaptation.
- **Prefix-tuning:** Optimizes only a small set of prefix tokens prepended to the input while keeping the model parameters fixed. Efficient for domain-specific adaptations.
- **Prompt-tuning:** Only optimizes a set of soft prompts without changing the model weights. Useful for few-shot learning and highly efficient in terms of memory.



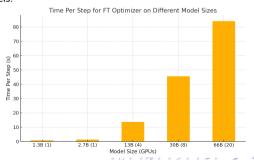
Memory Challenges in LLM Fine-tuning

Optimizer	Memory (GB)	Consumed GPUs
Forward-Grad	138 GB	2×A100
FO-SGD	161 GB	$3 \times A100$
FO-Adam	257 GB	$4 \times A100$

Hardware		FT	FT-prefix	Inference
	1×A100 (80GB)	2.7B	6.7B	30B
	2×A100 (160GB)	6.7B	13B	66B
	4×A100 (320GB)	13B	30B	66B
	8×A100 (640GB)	30B	66B	175B

Table: The left table shows the memory overhead for LLM fine-tuning with gradient-based algorithms for OPT-13B, while the right table shows GPUs needed for different scale models.

- Fine-tuning LLMs is extensively utilized but requires substantial memory, often necessitating multiple GPUs in practice.
- Due to the communications between GPUs, the time needed for each fine-tuning step increases significantly as the model size grows.

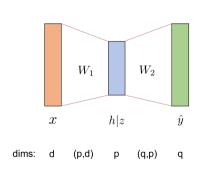


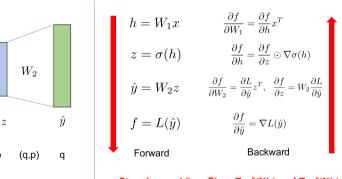
Outline

- 1 LLM Fine-tuning
- Zeroth-order Algorithm in LLMs
- 3 LOZO Algorithm Framework
- 4 Theoretical Analysis
- 5 Numerical Experiments

Gradient-based Method Needs to Store Activations

The intermediate activations generated during forward propagation must be stored for gradient computation during backward propagation.





Store h, z and \widehat{y} Store $\nabla_{W_1} f(W_1)$ and $\nabla_{W_2} f(W_2)$

If we use gradient-free methods, the memory for storing activations can be avoided!

Finite Difference Based ZO Algorithm

Consider the optimization problem for the LLM fine-tuning task:

$$\min_{m{X}} f(m{X}) := \mathbb{E}_{\xi}[F(m{X}; \xi)],$$

The iterative format of the ZO-SGD algorithm can be represented as follows:

$$\boldsymbol{X}^{t+1} = \boldsymbol{X}^t - \alpha \hat{\nabla} F(\boldsymbol{X}^t; \boldsymbol{\xi}^t),$$

where:

- $oldsymbol{\circ}$ $oldsymbol{X}^t$ is the current point in the parameter space.
- ullet α is the step size.
- $\hat{\nabla} F(\mathbf{X}^t; \xi^t)$ is the approximated gradient of the objective function at \mathbf{X}^t , calculated using finite differences.

Gradient Estimation Scheme

• Randomize vector-wise gradient estimator (RGE):

$$(\mathsf{RGE}) \quad \hat{\nabla} F(\boldsymbol{X}; \xi) := \frac{F(\boldsymbol{X} + \epsilon \boldsymbol{Z}; \xi) - F(\boldsymbol{X} - \epsilon \boldsymbol{Z}; \xi)}{2\epsilon} \boldsymbol{Z},$$

where \boldsymbol{Z} is sampled from a standard normal distribution.

Coordinate-wise gradient estimator (CGE):

$$(\mathsf{CGE}) \quad \hat{\nabla} F(\boldsymbol{X}; \xi) := \sum_{i=1}^d \frac{F(\boldsymbol{X} + \epsilon \boldsymbol{E}_i; \xi) - F(\boldsymbol{X} - \epsilon \boldsymbol{E}_i; \xi)}{2\epsilon} \boldsymbol{E}_i,$$

where E_i is a basis vector/matrix with its *i*-th element set to one and all other elements set to zero.

Memory-efficient ZO-SGD (MeZO) Algorithm

- In [1], the authors first introduce the ZO method for large language model (LLM) fine-tuning, employing a memory-efficient ZO-SGD algorithm with the RGE scheme, referred to as MeZO.
- Compared to gradient-based algorithms, MeZO reduces memory usage as it does not require storing the activations compared with FO algorithms.

Benefits:

- Memory efficiency
- Reduced GPU hours in large models due to less GPU communication.

Drawbacks:

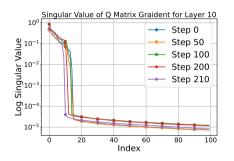
- Slower convergence.
- Performance gap vs. first-order methods, which we address.

¹Malladi S, Gao T, Nichani E, et al. Fine-tuning language models with just forward passes. Advances in Neural Information Processing Systems, 2024, 36.9.

Outline

- 1 LLM Fine-tuning
- Zeroth-order Algorithm in LLMs
- 3 LOZO Algorithm Framework
- 4 Theoretical Analysis
- 5 Numerical Experiments

Low-rank Structure of Gradients



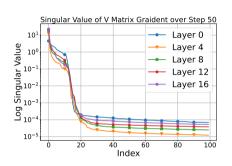


Figure: We conduct experiments to validate the low-rank gradient during the fine-tuning on the OPT-1.3B model with the COPA dataset, where the gradient matrix has dimensions of 2048×2048 .

- The true FO gradients generated in LLM fine-tuning exhibit a low-rank structure.
- The RGE scheme produces an estimated gradient that is essentially a projection of the true gradient onto a standard normal random matrix Z, which is almost always full rank.

LGE Scheme

• We express X as the set of trainable parameters $\{X_\ell\}_{\ell=1}^{\mathcal{L}}$, where $X_\ell \in \mathbb{R}^{m_\ell \times n_\ell}$, and introduce the following notations:

$$m{U} := \{U_\ell\}_{\ell=1}^{\mathcal{L}}, \, m{V} := \{V_\ell\}_{\ell=1}^{\mathcal{L}}, \, m{r} := \{r_\ell\}_{\ell=1}^{\mathcal{L}}.$$

Low-rank matrix-wise gradient estimator (LGE):

(LGE)
$$\hat{\nabla} F(\mathbf{X}; \xi) := \frac{F(\mathbf{X} + \epsilon \mathbf{U} \mathbf{V}^T; \xi) - F(\mathbf{X} - \epsilon \mathbf{U} \mathbf{V}^T; \xi)}{2\epsilon} (\mathbf{U} \mathbf{V}^T / \mathbf{r}),$$

where $U_{\ell} \in \mathbb{R}^{m_{\ell} \times r_{\ell}}$ and $V_{\ell} \in \mathbb{R}^{n_{\ell} \times r_{\ell}}$ are sampled from standard normal distributions, with $r_{\ell} \ll \min(m_{\ell}, n_{\ell})$.

• Using the LGE scheme, the gradient matrix has a rank of at most r_{ℓ} , effectively capturing the low-rank structure of the FO gradients.

Lazy Update Strategy

• **Vanilla recursion.** For any $t \ge 0$, the vanilla recursion with the LGE scheme is

$$m{X}^{t+1} = m{X}^t - lpha \hat{\nabla} F(m{X}^t; \xi^t)$$
 where $\hat{\nabla} F(m{X}^t; \xi^t) = \mathsf{LGE}(m{X}^t, m{U}^t, m{V}^t, m{r}, \epsilon, \xi^t)$.

• Lazy Update Strategy. While U is sampled at every iteration t, we only sample V every ν iterations. For $t \in \{k\nu, \dots, (k+1)\nu - 1\}$,

$$m{X}^{t+1} = m{X}^t - \alpha \hat{\nabla} F(m{X}^t; \xi^t)$$
 where $\hat{\nabla} F(m{X}^t; \xi^t) = \mathrm{LGE}(m{X}^t, m{U}^t, m{V}^{(k)}, m{r}, \epsilon, \xi^t)$.

Since multiple ZO steps are needed to match a single FO step, our strategy ensures the low-rank structure across accumulated gradient estimators, not just individual steps.

LOZO Algorithm

Algorithm 1: Low-rank ZO-SGD (LOZO)

```
Input: parameters X, step budget T, perturbation scale \epsilon, learning rate \alpha, sample interval \nu and rank \{r_{\ell}\}.
for t = 0, ..., T - 1 do
      foreach X_{\ell} \in X do
             Sample U_{\ell} \in \mathbb{R}^{m_{\ell} \times r_{\ell}} from the standard normal distribution :
             if t \mod \nu = 0 then
                    Sample V_{\ell} \in \mathbb{R}^{n_{\ell} \times r_{\ell}} from the standard normal distribution ;
                                                                                                                                                 // Resample V_{\ell}
      X \leftarrow \text{Perturbation}(X, \epsilon, \{U_{\ell}, V_{\ell}\});
      F_+ \leftarrow F(\boldsymbol{X}; \xi);
      X \leftarrow \text{Perturbation}(X, -2\epsilon, \{U_{\ell}, V_{\ell}\}):
      F_- \leftarrow F(X; \xi):
      X \leftarrow \text{Perturbation}(X, \epsilon, \{U_{\ell}, V_{\ell}\}):
                                                                                                                                         // Reset parameters
      c \leftarrow (F_+ - F_-)/2\epsilon;
                                                                                                                      // Calculate finite difference
      foreach X_i \in X do
        X_{\ell} \leftarrow X_{\ell} - \alpha \cdot c(U_{\ell}V_{\ell}^{T}/r_{l});
                                                                                                                       // Update parameters in place
Function Perturbation (X, \epsilon, \{U_{\ell}, V_{\ell}\}):
```

```
foreach X_{\ell} \in X do
 X_{\ell} \leftarrow X_{\ell} + \epsilon U_{\ell} V_{\ell}^{T};
                                                                                                                   // Modify parameters in place
```

return X:

LOZO-M Algorithm

• The ZO-SGD with momentum (ZO-SGD-M) can be expressed as follows:

$$m{\mathcal{M}}^t = eta m{\mathcal{M}}^{t-1} + (1-eta) \hat{
abla} F(m{X}^t; m{\xi}^t), \ m{X}^{t+1} = m{X}^t - lpha m{M}^t.$$

Compared to vanilla ZO-SGD, ZO-SGD-M introduces additional memory overhead since it requires storing the momentum term, which is proportional to the size of the model.

• By integrating the proposed LOZO algorithm with the momentum technique (LOZO-M), we can effectively mitigate the memory overhead issue.

LOZO-M Algorithm

- The gradient estimator for the LOZO algorithm can then be represented as $\hat{\nabla} F(\mathbf{X}^t; \xi^t) = c^t \mathbf{U}^t (\mathbf{V}^{(k)}/\mathbf{r})^T$.
- Since $\boldsymbol{V}^{(k)}$ remains fixed for $t \in \{k\nu, \dots, (k+1)\nu 1\}$, we only need to accumulate $c^t \boldsymbol{U}^t$ rather than the full gradient estimator $\hat{\nabla} F(\boldsymbol{X}^t; \xi^t)$ to update the momentum.
- The update rule of LOZO-M is given by:

$$m{N}^t = eta m{N}^{t-1} + (1-eta)c^t m{U}^t, \ m{X}^{t+1} = m{X}^t - lpha m{N}^t (m{V}^{(k)}/m{r})^T.$$

• When updating X^t , we compute $N^t(V^{(k)}/r)^T$ layer by layer and discard the result immediately after updating the weight of the corresponding layer.

LOZO-M Algorithm

- When $\boldsymbol{V}^{(k)}$ is updated, an additional step is required. Specifically, at $t=(k+1)\nu$, the gradient estimator $\hat{\nabla}F(\boldsymbol{X}^t;\xi^t)$ takes the form $c^t\boldsymbol{U}^t(\boldsymbol{V}^{(k+1)}/\boldsymbol{r})^T$ due to resampling, while the momentum from the previous step is $\boldsymbol{N}^{t-1}(\boldsymbol{V}^{(k)}/\boldsymbol{r})^T$.
- To address this, we project the old momentum onto the new subspace spanned by $V^{(k+1)}$ before updating N^t . We compute:

$$ilde{\mathbf{N}}^{t-1} = \arg\min_{\mathbf{N}} \|\mathbf{N}^{t-1}(\mathbf{V}^{(k)})^T - \mathbf{N}(\mathbf{V}^{(k+1)})^T \|.$$

ullet Given that $V_\ell^{\mathsf{T}} V_\ell pprox n_\ell I$ for any ℓ , the solution is

$$ilde{ extsf{N}}^{t-1} pprox extsf{N}^{t-1} (extsf{V}^{(k)})^T (extsf{V}^{(k+1)}/ extsf{n}).$$

Outline

- LLM Fine-tuning
- Zeroth-order Algorithm in LLMs
- 3 LOZO Algorithm Framework
- Theoretical Analysis
- Mumerical Experiments

Relation with Subspace Minimization

LOZO can be viewed as a subspace minimization method, using ZO to solve subproblems.

• Random subspace minimization. Analogous to random coordinate minimization, the random subspace minimization approach is

$$m{B}_k^\star = rg \min_{m{B}} \{f(\tilde{m{X}}^{(k)} + m{B}(m{V}^{(k)})^T)\}, \ m{V}^{(k)} \ ext{follows a normal distribution,} \ \tilde{m{X}}^{(k+1)} = \tilde{m{X}}^{(k)} + m{B}_k^\star (m{V}^{(k)})^T.$$

• **ZO** update for the subproblem. To solve the k-th subproblem, we apply the standard ZO-SGD and iterate for ν steps. The result is then used as an inexact solution:

$$m{\mathcal{B}}^{s+1} = m{\mathcal{B}}^s - \gamma \hat{
abla}_{m{\mathcal{B}}} F(ilde{m{\mathcal{X}}}^{(k)} + m{\mathcal{B}}^s(m{V}^{(k)})^T; \xi^s),$$

where $s = 0, \dots, \nu - 1$.

Equivalence between ZO Subspace Minimization and LOZO

• By defining $\mathbf{Y}^s := \tilde{\mathbf{X}}^{(k)} + \mathbf{B}^s(\mathbf{V}^{(k)})^T$ and applying the update rules for \mathbf{B} , we can derive the update rule for \mathbf{Y} , which matches the update rule for \mathbf{X} in the LOZO algorithm:

$$\mathbf{Y}^{s+1} = \mathbf{Y}^{s} - \gamma \frac{F(\mathbf{Y}^{s} + \epsilon \mathbf{U}^{s}(\mathbf{V}^{(k)})^{T}) - F(\mathbf{Y}^{s} - \epsilon \mathbf{U}^{s}(\mathbf{V}^{(k)})^{T})}{2\epsilon} \mathbf{U}^{s}(\mathbf{V}^{(k)})^{T}$$

$$= \mathbf{Y}^{s} - \alpha \cdot \text{LGE}(\mathbf{Y}^{s}, \mathbf{U}^{s}, \mathbf{V}^{(k)}, \mathbf{r}, \epsilon, \xi^{s}), \quad \forall s \in \{0, \dots, \nu - 1\}.$$

- Let the iteration sequence generated by the LOZO algorithm be denoted as $\{\boldsymbol{X}^t\}$. Using the relation $\boldsymbol{Y}^{(k,\nu)} = \tilde{\boldsymbol{X}}^{(k+1)}$, we observe that $\boldsymbol{X}^{k\nu} = \tilde{\boldsymbol{X}}^{(k)}$.
- This confirms that the LOZO algorithm operates as a random ZO subspace minimization method.

Convergence Result

Theorem

Let $T = K\nu$. With appropriate choices of the step size α and perturbation scale ϵ , the sequence $\{X^{k\nu}\}$, generated by the LOZO algorithm, converges at the following rate:

$$\frac{1}{\mathcal{K}}\sum_{k=0}^{\mathcal{K}-1}\mathbb{E}\|\nabla f(\boldsymbol{X}^{k\nu})\|^2 \leq O\left(\sqrt{\frac{\Delta_0 L\tilde{d}\sigma^2}{T}} + \frac{\Delta_0 L d\nu}{T}\right),$$

where $\Delta_0 := f(\mathbf{X}^0) - f^*$ represents the initial gap to the optimal value, $\tilde{d} = \sum_{\ell=1}^{\mathcal{L}} (m_\ell n_\ell^2/r_\ell)$, and $d = \sum_{\ell=1}^{\mathcal{L}} m_\ell n_\ell$.

- The results demonstrate that LOZO achieves global convergence.
- The convergence rate depends on *d*, indicating that more steps are required for fine-tuning large-scale language models.

Outline

- 1 LLM Fine-tuning
- Zeroth-order Algorithm in LLMs
- 3 LOZO Algorithm Framework
- 4 Theoretical Analysis
- **6** Numerical Experiments

Performance Comparison on Medium-sized Models

 LOZO and LOZO-M algorithms outperform other ZO methods and achieve performance comparable to FO methods on the RoBERTa-large model.

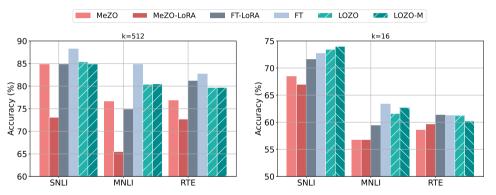


Figure: The figures illustrate the performance of different algorithms on RoBERTa-large across three tasks (SNLI, MNLI, and RTE), with the left panel corresponding to k = 512 and the right panel corresponding to k = 16.

Performance Comparison on Large-sized Models

• LOZO algorithm also demonstrates performance improvements on large-scale models, including OPT-30B and OPT-66B.

Task	SST-2	RTE	BoolQ	WSC	WiC	SQuAD
30B zero-shot	56.7	52.0	39.1	38.5	50.2	46.5
30B ICL	81.9	66.8	66.2	56.7	51.3	78.0
30B MeZO	90.7	64.3	68.2	63.5	56.3	86.1
30B LOZO	92.8	65.3	72.3	64.4	57.2	85.6
66B zero-shot	57.5	67.2	66.8	43.3	50.6	48.1
66B ICL	89.3	65.3	62.8	52.9	54.9	81.3
66B MeZO	92.0	71.5	73.8	64.4	57.8	84.0
66B LOZO	92.5	74.0	74.5	63.5	59.4	85.8

Table: Experiments on OPT-30B and OPT-66B on the SuperGLUE benchmark. The best results are shown in **bold**.

Memory-efficiency of LOZO and LOZO-M

• LOZO algorithm exhibits superior memory efficiency compared to other algorithms, while the momentum variant, LOZO-M, introduces minimal additional memory overhead.

Task	RTE		MultiRC		
ruon	Memory	Consumed GPUs	Memory	Consumed GPUs	
LOZO	27.0 GB	1× A800	26.9 GB	1× A800	
LOZO-M	27.4 GB	1× A800	27.3 GB	1× A800	
MeZO	27.4 GB	1× A800	27.3 GB	1× A800	
MeZO-M	51.7 GB	1× A800	52.1 GB	1× A800	
FT-LoRA	79.0 GB	1× A800	102.4 GB	2× A800	
FT	250.0 GB	4× A800	315.2 GB	4× A800	

Table: Comparison of memory costs for LOZO, MeZO, their momentum variants, and FO methods on OPT-13B.

Many Thanks For Your Attention!