

Joint Fine-tuning and Conversion of Pretrained Speech and Language Models towards Linear Complexity

Mutian He, Philip N. Garner

Background

- Transformers are so expensive!
 - $O(L^2)$ time complexity
 - O(L) KV cache
- ···especially when handing speech
 - few words \approx 1sec = 16K samples = 50 frames

Background

- The ever-growing arsenal of transformer alternatives
 - Low rank attention: Linformer
 - Restricted attention: Longformer, Big Bird, Native Sparse Attention...
 - RNNs (a.k.a. Linear attention): RetNet, RWKV, Mamba, DeltaNet ...
 - ···still increasing!

Motivation

- How to make use of these new models?
 - Pretrained parameters often unavailable, esp. on speech
 - New models emerge rapidly
- Redo the whole pretraining for each new one?
 - Computational costs
 - Access to pretraining data
- Find some way fast & cheap!

Goal

- Convert pretrained transformers into the target model
 - When possible, use only the downstream target task data, avoid repretraining
- Retain standard transformer performance

Methods

- Knowledge transfer from original transformer
- Unguided: Parameter transfer
 - Replace attention layers with, e.g. Mamba layers, then fine-tuning
 - Other parameters (e.g. MLPs) are reused
- Guided: Behavior transfer
 - Reproduce the original behavior (hidden states) by layerwise distillation

Method: Cross Architecture Layerwise Distillation

$$\mathcal{L}_{CE}(\boldsymbol{y}^{(s)}, \boldsymbol{y}) = -\sum_{i} \boldsymbol{y}_{i} \log(\boldsymbol{y}_{i}^{(s)})$$

$$\mathcal{L}_{KD}(\boldsymbol{y}^{(s)}, \boldsymbol{y}^{(t)}) = \sum_{i} \left(\frac{\boldsymbol{y}_{i}^{(t)}}{\beta}\right) \log\left(\frac{\boldsymbol{y}_{i}^{(t)}/\beta}{\boldsymbol{y}_{i}^{(s)}/\beta}\right)$$

$$\mathcal{L}_{LD}(\boldsymbol{H}^{(s)}, \boldsymbol{H}^{(t)}) = \frac{1}{m} \sum_{i=1}^{m} \left(\boldsymbol{H}_{i}^{(s)} - \boldsymbol{H}_{i}^{(t)}\right)^{2}$$

$$\mathcal{L} = \alpha_{CE} \mathcal{L}_{CE} + \alpha_{KD} \mathcal{L}_{KD} + \alpha_{LD} \mathcal{L}_{LD}$$

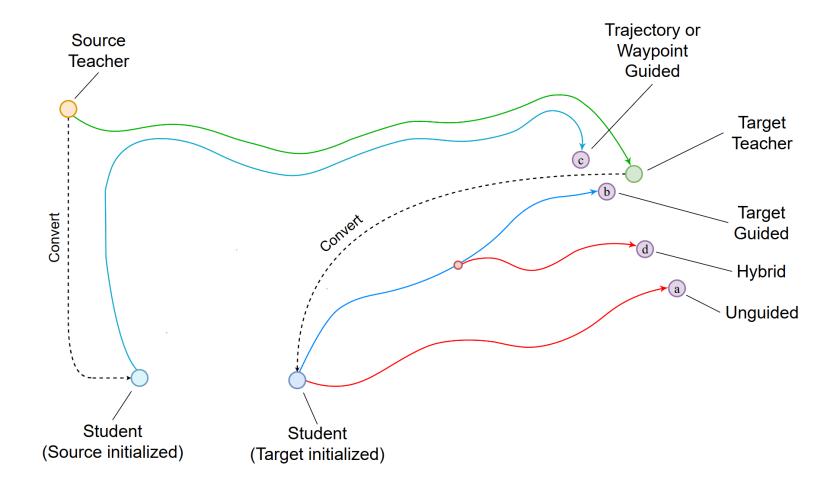
Distillation modes

- Which model should be the teacher?
- Target-guided
 - Using fine-tuned transformer ("target teacher")
- Trajectory/waypoint guided
 - Original pretrained transformer ("source teacher") carries important knowledge lost in fine-tuning
 - Can we reproduce the trajectory of transformer fine-tuning?

Distillation modes

- When should we distill?
- Distillation loss terms pose constraint on model training
 - Hybrid: remove distillation loss terms in the late stage of training

Distillation modes



Configuration

- Three sets of experiments considered
 - RoBERTa → Linformer, on NLP tasks: QNLI, QQP, SST2, IMDB
 - Wav2Vec2 → Bidirectional Mamba2, on speech tasks: TEDLIUM (ASR), SLURP (IC), VoxCeleb1 (Speaker ID)
 - Extra: Pythia-1B → Mamba, on zero-shot LM tasks

Empirical results: NLP

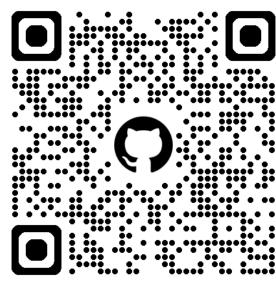
Check similar LM and speech results, and trajectory visualization in our paper!

						_
	QNLI	QQP	SST2	IMDB	Average	-
Pretrained Linformer	91.2%	90.8%	93.1%	94.1%	92.3%	-
Std. RoBERTa	92.4%	91.8%	95.3%	95.7%	93.8% +1.3	
X Unguided	53.1%	73.3%	82.6%	82.6%	72.9% -19.4	
CALD						Performa retained
- Target Guided	89.0%	91.8%	93.3%	92.3%	91.6% -0.7	returred
- Src. init.					91.4% -0.9	1
- Trajectory Guided	91.2%	91.9%	94.0%	93.1%	92.5% +0.2	
- Waypoint Guided					92.1% -0.2	
- Hybrid	86.8%	90.8%	91.4%	90.5%	89.9% -2.4	

Better results on speech, see paper for explanation

Takeaway

- Pretrained transformers can be converted to linear-complexity models
 - Guided by distillation only on the target task
- Different modes of distillation may help
 - Guidance from the original transformer fine-tuning trajectory
 - Hybrid of guided and unguided training



arXiv:2410.06846 Code available

THANK YOU