

Causal Discovery via Bayesian Optimization

Bao Duong, Sunil Gupta & Thin Nguyen

Problem

Score-based causal discovery (SCD):

$$\mathcal{G}^* = \underset{\mathcal{G} \in DAGs}{\operatorname{arg max}} S\left(\mathcal{D}, \mathcal{G}\right).$$

- Challenges:
 - 1. Constraint: the graphs must be acyclic.
 - 2. Scalability: high-dim & many trials.
 - **3. Sample-efficiency**: score calculation can be expensive.

Introduction

Existing approaches

- Greedy search (e.g., GES)
 - Slow exploration: add/remove one edge at a time.
- Continuous optimization (e.g., NOTEARS, DAGMA, etc.)
 - Lack exploration: only follow the gradient direction.
- Reinforcement learning (e.g., RL-BIC, CORL, ALIAS, etc.)
 - Inefficient exploration: blindly explore random DAGs without pre-examining their potential.

A

Introduction

Motivation

- By modelling the explored DAG scores to detect promising exploration candidates, we may arrive at better solutions earlier
- → Bayesian Optimization (BO)
- Applying BO directly to SCD is hard:
 - SCD is usually **high-dim** and **constrained**, while BO works well **low-dim** and **unconstrained**.
 - BO scales poorly with #trials, while we may need thousands or more trials for SCD.
 - Acquisition function optimization in BO is itself a SCD problem, thus requiring to be very efficient to be practical.
- → we propose the **first BO-based SCD method** for sample-efficiency by making several innovations.

Introduction

Our work

- 4 innovations to specifically adapt BO to SCD:
 - 1. Low-rank unconstrained search space → addressing acyclicity & dimensionality.
 - 2. Replacing GPs with Dropout networks for surrogate modelling → addressing **scalability**.
 - 3. Indirect DAG score modelling → addressing surrogate modelling accuracy.
 - 4. Continual model training → addressing **scalability**.
- These enables accurate and sample-efficient SCD, as verified through extensive experiments and ablations.

A

Introduction

Our findings

- DrBO is highly accurate & sample-efficient compared with existing SOTAs.
 - Accuracy: SHD ≈ 0 for linear & nonlinear data, dense & large graphs, synthetic & real data.
 - Sample-efficiency: SHD ≈ 0 is reached earlier than other methods in both number of DAG evaluations & time.
- Ablations confirm that:
 - Lower rank = better sample-efficiency.
 - Dropout nets scale better than GPs.
 - Indirect DAG modelling = more accuracy.
 - Continual training = linear scalability.

Low-dim unconstrained search space

 We turn the constrained optimization problem to an easier unconstrained problem with low-dim search space:

$$\mathcal{G}^* = \operatorname*{arg\,max}_{\mathcal{G} \in \mathsf{DAGs}} S\left(\mathcal{D}, \mathcal{G}\right) \Longleftrightarrow \mathbf{z}^* = \operatorname*{arg\,max}_{\mathbf{z} \in \mathbb{R}^{d(1+k)}} S\left(\mathcal{D}, \tau\left(\mathbf{z}\right)\right)$$

• The map τ turns unconstrained continuous-value parameters to a **DAG**:

$$\tau\left(\mathbf{p},\mathbf{R}\right) := \underbrace{H\left(\operatorname{grad}\left(\mathbf{p}\right)\right)}_{\text{ensures acyclitiy}} \underbrace{\underbrace{H\left(\mathbf{R}\cdot\mathbf{R}^{\top}\right)}_{\text{low-rank connectivity}}}$$

where $R \in \mathbb{R}^{d \times k}$ $(k \ll d)$ is an embedding matrix and z is concatenation of p and R.

- This is a low-rank adaptation of Vec2DAG (Duong et al., 2024).
- \rightarrow Search dimensionality scales linearly with d and allows generating more diverse DAGs.

Acquisition function optimization

- Acquisition function optimization = SCD with acquisition function values as scores → sampling-based approach for efficiency:
 - Trust-region sampling: random $\{\mathbf{z}^{(j)}\}_{j=1}^{C}$ are generated from a hypercube centred at best solution so far \mathbf{z}^* .
 - Then, top-*B* candidates with highest acquisition function values are chosen.
- Larger *C* = higher-quality candidates → acquisition function evaluation must scale very well.

Surrogate Modelling with Dropout Networks

- GPs scale cubically with number of datapoints, both in training and sampling.
- Dropout nets = approximate Bayesian inference (Gal & Ghahramani, 2016).

$$\operatorname{DropoutNN}\left(\mathbf{x}\right) := \mathbf{W}_{2}^{\top} \left(\operatorname{BatchNorm}\left(\operatorname{ReLU}\left(\frac{1}{1-p} \left(\left(1 - \mathbf{m} \right) \circ \left(\mathbf{W}_{1}^{\top} \mathbf{x} + \mathbf{b}_{1} \right) \right) \right) \right) + b_{2}.$$

- A forward pass $y \sim DropoutNN(x) \approx$ sampling from P(y|x, X, y) = Thompson sampling as acquisition function.
- → constant-time acquisition function evaluation.

Indirect Surrogate Modelling

- Naïve approach: train a network predicting S(D, G) directly from G.
- However, partial scores are not well exploited. E.g.:

$$S_{\text{BIC-EV}}(\mathcal{D}, \mathcal{G}) := -nd \ln \frac{\sum_{i=1}^{d} \text{MSE}_i \left(\text{pa}_i^{\mathcal{G}} \right)}{d} - |\mathcal{G}| \ln n.$$

 \rightarrow we use the evaluation data $\left\{\left(\operatorname{pa}_{i}^{\mathcal{G}^{(j)}},\operatorname{MSE}_{i}\left(\operatorname{pa}_{i}^{\mathcal{G}^{(j)}}\right)\right)\right\}$ to train **separate dropout networks**, then combine the predictions:

$$\hat{S}_{\mathrm{BIC-EV}}\left(\mathcal{D},\mathcal{G}\right) := -nd\ln\frac{\sum_{i=1}^{d}\widehat{\mathrm{MSE}_{i}}\left(\mathrm{pa}_{i}^{\mathcal{G}}\right)}{d} - |\mathcal{G}|\ln n.$$

Now all information is fully exploited → accurate score estimates.

Continual Model Training

- Retraining the neural nets every BO iteration is costly, which prevents scaling to many trials.
- → we instead train them continually: each iteration apply several gradient steps on the new data combined with a random batch of past data.
- → constant-time model update.

Overall Algorithm

Algorithm 1 The DrBO method for causal discovery.

Require: Dataset $\mathcal{D} = \left\{\mathbf{x}^{(j)} \in \mathbb{R}^d\right\}_{j=1}^n$ of d nodes and n observations, score function $S(\mathcal{D},\cdot)$, DAG rank k, batch size B, no. of preliminary candidates C, and total no. of evaluations T.

Ensure: A DAG $\hat{\mathcal{G}}$ that maximizes $S(\mathcal{D}, \mathcal{G})$.

- 1: Initialize empty experience $\mathcal{H} := \emptyset$ and node-wise dropout neural nets: $\{\text{DropoutNN}_i\}_{i=1}^d$.
- 2: while $|\mathcal{H}| < T$ do
- 3: Generate random DAGs: $\{\mathcal{G}^{(j)} := \tau(\mathbf{z}^{(j)})\}_{i=1}^{C}$ where $\mathbf{z} \in [-1, 1]^{d(1+k)}$. \triangleright Secs. 4.1 & 4.2.
- 4: Sample local scores: $\left\{ \left\{ l_i^{(j)} \sim \text{DropoutNN}_i \left(\text{pa}_i^{\mathcal{G}^{(j)}} \right) \right\}_{i=1}^d \right\}_{j=1}^C$. $\triangleright \underline{\text{Sec. 4.3}}$.
- 5: Combine local scores: $\left\{ AF^{(j)} := Combine \left(l_1^{(j)}, \dots, l_d^{(j)} \right) \right\}_{j=1}^{C}$. $\triangleright \underline{Sec. 4.4}$.
- 6: Select top B candidates with highest AF values: $j_1, \ldots, j_B := \underset{j=1,\ldots,C}{\operatorname{argtop}} \operatorname{AF}^{(j)}$. $\triangleright \underline{\operatorname{Sec. 4.2}}$.
- 7: Evaluate these candidates and update experience: $\mathcal{H} := \mathcal{H} \cup \left\{ \left(\mathcal{G}^{(j)}, S\left(\mathcal{D}, \mathcal{G}^{(j)}\right) \right) \right\}_{j=j_1, \dots, j_B}$
- 8: Update the neural nets on new \mathcal{H} . \triangleright Sec. 4.5
- 9: end while
- 10: Get highest-scoring DAG so far: $\hat{\mathcal{G}} := \arg \max_{\mathcal{G} \in \mathcal{H}} S(\mathcal{D}, \mathcal{G})$.
- 11: Prune $\hat{\mathcal{G}}$ if needed.

⊳ <u>Sec. 4.6</u>.

Experiments

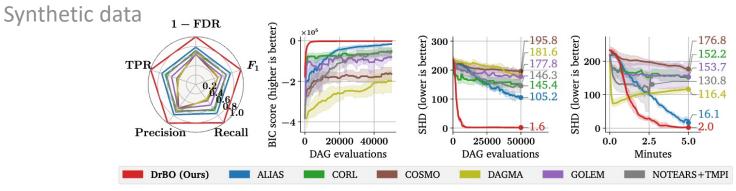


Figure 1. Linear-Gaussian data with dense graphs (30-node ER-8).

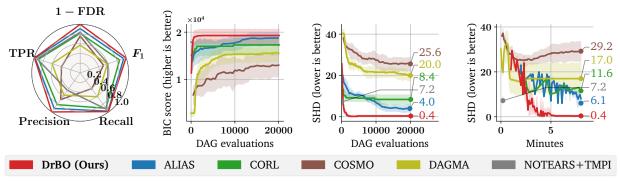


Figure 2. Non-linear data.

Experiments

Real data

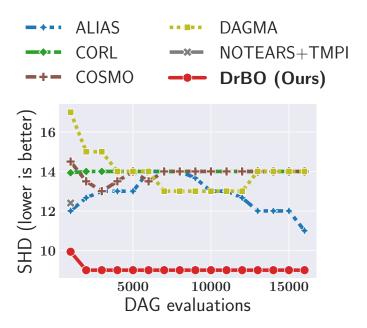
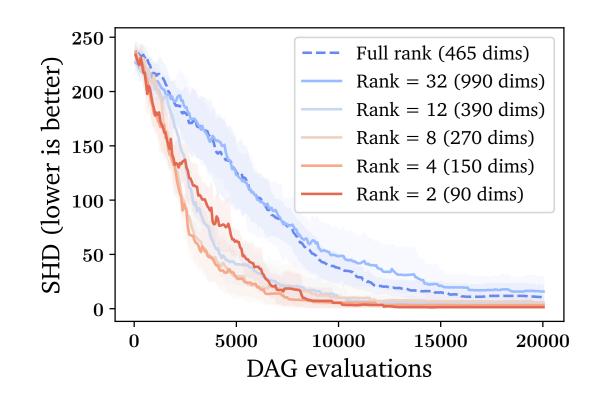


Figure. Causal Discovery performance on the Sachs dataset

Lower rank = more sample-efficiency

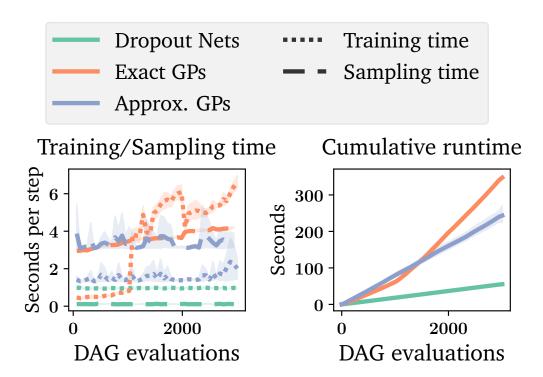


Lower rank = more diverse candidates

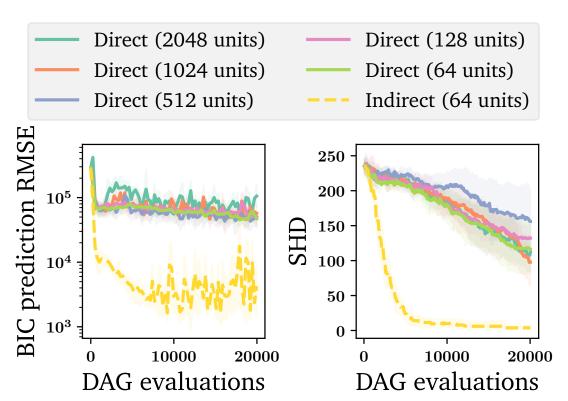
Table 5: **Effect of DAG Rank on Exploration Diversity.** We generate 1,000 DAGs with d=30 nodes using $\mathcal{G}:=\tau\left(\mathbf{z}\right)$, $\mathbf{z}\in\left[-1,1\right]^{d\cdot(1+k)}$ with different k. The numbers are mean \pm std over 10 simulations.

Rank k in Eq. (4)	Number of dimensions	Number of unique 30-node DAGs over $1{,}000$ random DAGs
2	90	$926.7 \pm \ \ 7.0$
4	150	779.2 ± 12.7
8	270	493.5 ± 12.3
12	390	332.4 ± 10.8
32	990	90.7 ± 9.5
Full rank (Vec2DAG, Duong et al., 2024)	465	421.9 ± 13.8

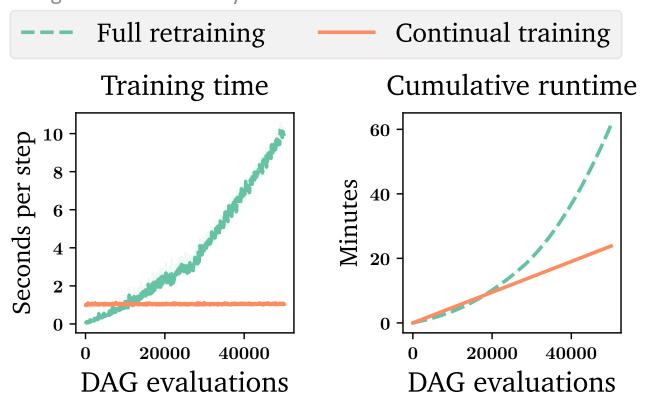
Dropout Nets scale much better than GPs



Indirect DAG Modelling = more accuracy



Continual Training = linear scalability



Key takeaways

- We propose to the use of Bayesian optimization for sample-efficient scorebased causal discovery.
- 4 innovations to specifically adapt BO to SCD:
 - 1. Low-rank unconstrained search space.
 - 2. Replacing GPs with Dropout networks for surrogate modelling.
 - 3. Indirect DAG score modelling.
 - 4. Continual model training.
- These enables accurate and sample-efficient SCD, as verified through extensive experiments and ablations.