

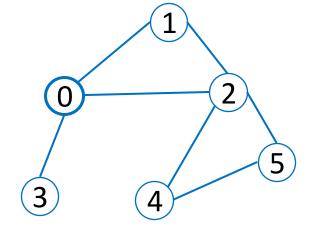
TGB-Seq Benchmark: Challenging Temporal GNNs with Complex Sequential Dynamics

Lu Yi, Jie Peng, Yanping Zheng*, Fengran Mo, Zhewei Wei* Yuhang Ye, Zixuan Yue, Zengfeng Huang

Contact: yilu@ruc.edu.cn

Temporal Graphs

- Static graphs G = (V, E)
 - The graph remains unchanged over time.



- Temporal graphs: a more concrete abstraction of real-world systems
 - o Social network: new users join, connections between users form
 - Recommendation network: users purchase and review products

$$\circ G_i = (V_i, E_i)$$

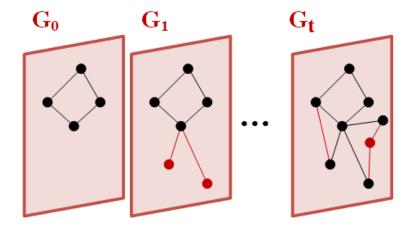
Temporal Graphs

<u>Discrete-time temporal graphs</u>

• A stream of graph snapshots:

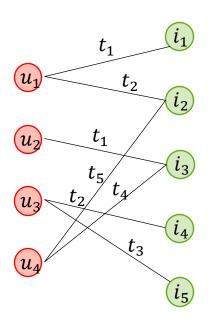
$$\{G_1, G_2, \dots, G_T\}$$

$$G_i = (V_i, E_i)$$



Continuous-time temporal graphs

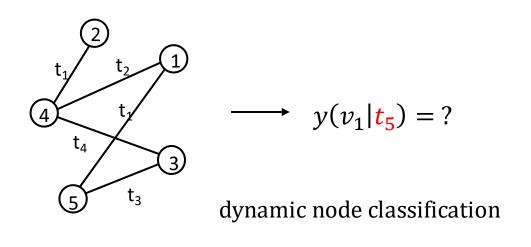
• A stream of edges: $\{(s_0, d_0, t_0), (s_1, d_1, t_1), \dots, (s_T, d_T, t_T)\}$

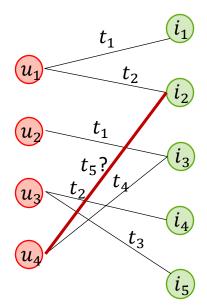


Tasks of Temporal GNNs

Future link prediction

- o Given G, (s, d, t) and E before t, the model is asked to predict the likelihood of the edge (s, d) appearing at time t.
- Often framed as a **ranking** problem among multiple negative samples. Given G, (s, d, t) and E before t, the model is asked to rank d higher among sampled k nodes.
- MRR is used as the metric.
- Other tasks: dynamic node classification...





future link prediction

Temporal GNNs

- Existing methods = memory module + aggregation module
- Memory module

$$\mathbf{mem}(s) = \text{MEM}(\mathbf{mem}(s), \mathbf{x}_s, \{(\mathbf{mem}(d), \mathbf{e}_{s,d}, \Delta t) \mid d \in \mathcal{N}_{\mathbf{b}}(s)\}),$$

Aggregation module

$$\mathbf{emb}(s) = AGGR\left(\mathbf{x}_s, \left\{ (\mathbf{x}_d, \mathbf{e}_{s,d}, \Delta t) \mid d \in \mathcal{N}_t^k(s) \right\} \right),$$

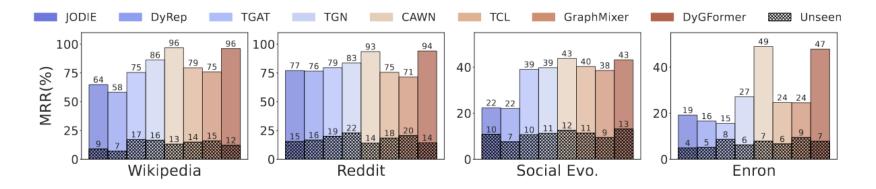
- \circ If memory module is available, x_s is the combination of the memory and feature.
- High-order aggregation module

$$\mathbf{rel}(s, d) = \text{CO-REL}\left(\mathcal{N}_t^k(s), \mathcal{N}_t^k(d)\right),$$

Method	Memory	Aggregation	High-order
TGN	GRU	Attention	/
EdgeBank	Record all histories	/	/
GraphMixer	1	MLP-Mixer	/
DyGFormer	/	Attention	Co-neighbors frequency

Motivations

• Observation 1. Temporal GNNs excel in predicting seen edges but struggle to generalize to unseen edges.



• Observation 2. Temporal GNNs fail to perform effectively on recommendation datasets, a typical downstream application.

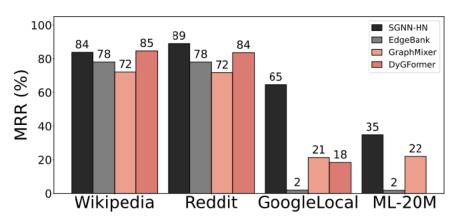
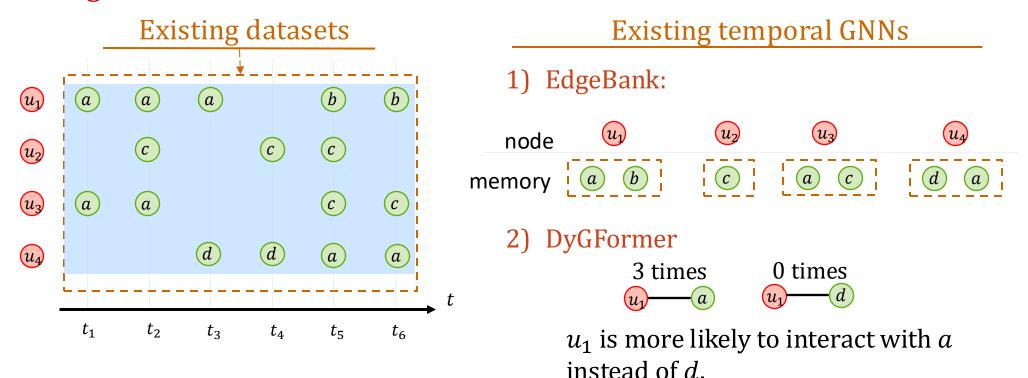


Figure 1: The MRR scores of three selected temporal GNNs and SGNN-HN on two existing datasets (Wikipedia, Reddit) and two recommendation datasets (Yelp and Taobao).

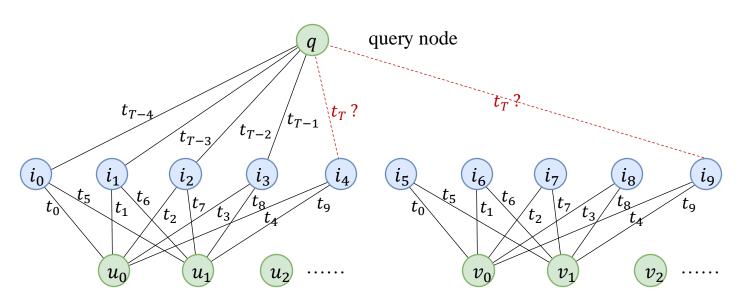
Existing dataset

- Existing datasets (e.g., Wikipedia, Reddit) often contain excessive repeated historical edges.
- Leading existing methods to predict historical edges using memory or aggregation techniques.
- These methods perform well on such datasets but may struggle to generalize.



Current pitfalls in temporal GNNs

 Existing temporal GNNs struggle to capture even basic sequential dynamics, limiting their effectiveness in real-world applications



When predicting the next interaction of a node which has previously interacted with i_0 , i_1 , i_2 , i_3 , all methods fail to correctly predict i_4 instead of i_9 .

Table 1: The AP metric on the toy example dataset. ℓ indicates the length of the temporal random walk of CAWN.

Method	AP (%)
JODIE	51.19 ± 0.32
DyRep	51.30 ± 0.27
TGAT	51.06 ± 0.23
TGN	51.25 ± 0.48
CAWN $(\ell = 1)$	50.00 ± 0.00
CAWN $(\ell = 2)$	52.80 ± 0.05
EdgeBank	50.00 ± 0.00
TCL	50.00 ± 0.00
GraphMixer	50.00 ± 0.00
DyGFormer	50.66 ± 0.50
SGNN-HN	100.00 ± 0.00

Analysis of the Pitfall

Memory module

$$\mathbf{mem}(s) = \text{MEM}\left(\mathbf{mem}(s), \mathbf{x}_s, \{(\mathbf{mem}(d), \mathbf{e}_{s,d}, \Delta t) \mid d \in \mathcal{N}_{\mathbf{b}}(s)\}\right),$$

Aggregation module

$$\mathbf{emb}(s) = AGGR\left(\mathbf{x}_s, \left\{ (\mathbf{x}_d, \mathbf{e}_{s,d}, \Delta t) \mid d \in \mathcal{N}_t^k(s) \right\} \right),\,$$

High-order aggregation module

$$\mathbf{rel}(s, d) = \text{CO-REL}\left(\mathcal{N}_t^k(s), \mathcal{N}_t^k(d)\right),$$

- Due to the lack of distinguishing feature in nodes and edges, and the identical interaction times between group u and group v, both modules cannot distinguish i_4 and i_9 in the toy example.
- High-order aggregation offers slight improvement
 - o but introduces excessive noise [Besta et al. 2024]

Method	AP (%)		
CAWN $(\ell = 1)$	50.00 ± 0.00		
CAWN $(\ell = 2)$	52.80 ± 0.05		

Sequential dynamics are everywhere!

Movie watching

Social networks

E-commerce

• <u>Understanding complex sequential dynamics is key to improving temporal GNNs performance in real-world applications.</u>

TGB-Seq: new benchmark

- focuses on the task of future link prediction
- eight datasets: four bipartite and four non-bipartite graphs
- low repeat ratio $r = |\mathcal{E}_{\text{seen}}|/|\mathcal{E}|$
- diverse domains representing typical real-world application of future link prediction
- adhere to power-law degree distributions
- medium to large scale

Table 2: Statistics of TGB-Seq datasets.

Dataset	Nodes (users/items)	Edges	Timestamps	Repeat ratio(%)	Density(%)	Bipartite	Domain
ML-20M	100,785/9,646	14,494,325	9,993,250	0	1.49×10^{0}	✓	Movie rating
Taobao	760,617/863,016	18,853,792	139,171	16.58	2.87×10^{-3}	✓	E-commerce interaction
Yelp	1,338,688/405,081	19,760,293	14,646,734	25.18	3.64×10^{-3}	✓	Business review
GoogleLocal	206,244/267,336	1,913,967	1,771,060	0	3.47×10^{-3}	✓	Business review
Flickr	233,836	7,223,559	134	0	1.32×10^{-2}	×	Who-To-Follow
YouTube	402,422	3,288,028	203	0	2.03×10^{-3}	×	Who-To-Follow
Patent	2,241,784	12,749,824	1,632	0	2.54×10^{-4}	×	Citation
WikiLink	1,361,972	34,163,774	2,198	0	1.84×10^{-3}	×	Web link

Compare with existing datasets

• low repeat ratio $r = |\mathcal{E}_{\text{seen}}|/|\mathcal{E}|$

Table 5: A selected list of datasets used for continuous-time temporal graph learning.

Dataset	Nodes (users/items)	Edges	Timestamps	Repeat ratio(%)	Density(%)	Bipartite	Domain
ML-20M	100,785/9,646	14,494,325	9,993,250	0	1.49×10^{0}	√	Movie rating
Taobao	760,617/863,016	18,853,792	139,171	16.58	2.87×10^{-3}	\checkmark	E-commerce interaction
Yelp	1,338,688/405,081	19,760,293	14,646,734	25.18	3.64×10^{-3}	\checkmark	Business review
GoogleLocal	206,244/267,336	1,913,967	1,771,060	0	3.47×10^{-3}	\checkmark	Business review
Flickr	233,836	7,223,559	134	0	1.32×10^{-2}	×	Who-To-Follow
YouTube	402,422	3,288,028	203	0	2.03×10^{-3}	×	Who-To-Follow
Patent	2,241,784	12,749,824	1,632	0	2.54×10^{-4}	×	Citation
WikiLink	1,361,972	34,163,774	2,198	0	1.84×10^{-3}	×	Web link
Wikipedia	8,227/1,000	157,474	152,757	88.41	1.91×10^{0}	√	Interaction
Reddit	10,000/984	672,447	669,065	88.32	6.83×10^{0}	\checkmark	Social
MOOC	7,047/97	411,749	345,600	56.66	6.02×10^{1}	\checkmark	Interaction
LastFM	980/1,000	1,293,103	1,283,614	88.01	1.32×10^2	\checkmark	Interaction
Enron	184	125,235	22,632	90.79	3.70×10^{2}	×	Social
Social Evo.	74	2,099,519	565,932	99.77	3.83×10^{4}	×	Proximity
UCI	1,899	59,835	58,911	66.06	1.66×10^{0}	×	Social
Flights	13,169	1,927,145	122	79.50	1.11×10^{0}	×	Transport
Contact	692	2,426,279	8,064	96.72	5.07×10^2	×	Proximity
tgbl-wiki	8,227/1,000	157,474	152,757	88.41	1.91×10^{0}	✓	Interaction
tgbl-review	352,636/298,590	4,873,540	6,865	0.19	4.63×10^{-3}	\checkmark	Rating
tgbl-coin	638,486	22,809,486	1,295,720	82.93	5.60×10^{-3}	×	Transaction
tgbl-comment	994,790	44,314,507	30,998,030	19.81	4.48×10^{-3}	×	Social
tgbl-flight	18,143	67,169,570	1,385	96.48	2.04×10^{1}	×	Transport
Bitcoin-Alpha	3,783	24,186	24,186	0	1.69×10^{-1}	×	Finance
Bitcoin-OTC	5,881	35,592	35,592	0	1.03×10^{-1}	×	Finance

Node Degree Distribution

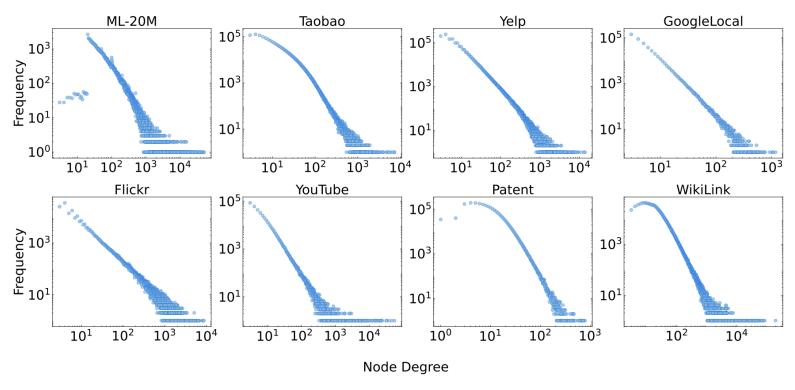


Figure 5: Distribution of node degree on our TGB-Seq dataset.

Benchmarking (1)

Datasets	ML-20M	Taobao	Yelp	GoogleLocal	Wikipedia	Reddit
JODIE	21.16 ± 0.73	55.25 ± 0.35	69.88 ± 0.31	41.86 ± 1.49	76.94 ± 0.28	77.92 ± 0.10
DyRep	19.00 ± 1.69	49.67 ± 1.41	57.69 ± 1.05	37.73 ± 1.34	68.09 ± 1.45	75.30 ± 0.30
TGAT	10.47 ± 0.20	OOT	OOT	19.78 ± 0.24	72.42 ± 0.38	76.69 ± 0.52
TGN	23.99 ± 0.20	62.21 ± 4.09	69.79 ± 0.24	54.13 ± 1.97	81.16 ± 0.19	79.82 ± 0.26
CAWN	12.31 ± 0.02	OOT	25.71 ± 0.09	18.26 ± 0.02	88.23 ± 0.33	87.31 ± 0.32
EdgeBank	1.82 ± 0.00	OOT	9.77 ± 0.00	1.96 ± 0.00	78.10 ± 0.00	78.08 ± 0.00
TCL	12.04 ± 0.02	31.55 ± 0.03	24.39 ± 0.67	18.30 ± 0.02	45.47 ± 3.48	36.09 ± 2.10
GraphMixer	21.97 ± 0.17	31.54 ± 0.02	33.96 ± 0.19	21.31 ± 0.14	72.14 ± 0.80	71.73 ± 0.32
DyGFormer	ООТ	OOT	21.68 ± 0.20	18.39 ± 0.02	84.64 ± 0.43	83.57 ± 1.42
SGNN-HN	33.12 ± 0.01	68.58 ± 0.21	69.34 ± 0.44	62.88 ± 0.51	83.83 ± 0.55	89.01 ± 0.17

- Memory-based methods (JODIE, DyRep and TGN) significantly outperform other temporal GNNs on TGB-Seq datasets, in contrast with their performance on the Wikipedia and Reddit dataset.
- DyGFormer and CAWN outperform other temporal GNNs on Wikipedia and Reddit dataset, but fail to perform effectively on TGB-Seq datasets.
- TGB-Seq datasets assess the capabilities of temporal GNNs from a novel perspective, distinct from existing datasets.

Datasets	Flickr	YouTube	Patent	WikiLink
JODIE	60.43 ± 1.63	65.21 ± 0.50	20.80 ± 1.00	70.43 ± 1.26
DyRep	60.28 ± 1.41	63.02 ± 1.92	22.67 ± 0.27	60.25 ± 1.68
TGAT	23.53 ± 3.35	43.56 ± 2.53	8.49 ± 0.18	OOT
TGN	68.38 ± 0.57	72.06 ± 1.48	20.92 ± 1.22	73.84 ± 2.96
CAWN	48.69 ± 6.08	47.55 ± 1.08	12.34 ± 0.47	OOT
TCL	40.00 ± 1.76	50.17 ± 1.98	10.60 ± 1.75	43.02 ± 2.16
GraphMixer	45.01 ± 0.08	58.87 ± 0.12	18.97 ± 2.54	48.57 ± 0.02
DyGFormer	49.58 ± 2.87	46.08 ± 3.44	14.20 ± 2.93	OOT

- The memory-based methods outperform others across datasets.
- Aggregation-only methods perform better on non-bipartite datasets than on bipartite datasets.
- The rank of aggregation-only methods are various across datasets: DyGFormer > GraphMixer on Flickr, GraphMixer > DyGFormer on YouTube.

Training cost

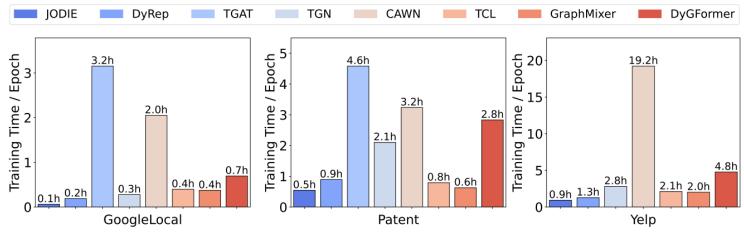


Figure 4: The average training cost per epoch of nine popular temporal GNN methods on GoogleLocal, Patent, and Yelp datasets consists of 1.9M, 12.7M, and 19.7M edges, respectively.

- Most efficient methods: JODIE, DyRep, GraphMixer, TCL, TGN
- Inefficient methods: TGAT, DyGFormer, CAWN

Conclusion

- Existing temporal GNNs fail to capture sequential dynamics in temporal graphs, limiting their generalizations to unseen edges.
- Existing datasets contain excessive repetitions of edges and overlook the intricate sequential dynamics present in realworld dynamic systems.
- TGB-Seq datasets are curated from diverse application domains with intricate sequential dynamics and minimal repeated edges.
- Benchmarking on TGB-Seq datasets highlights the limitations of existing temporal GNNs, demonstrates TGB-Seq's ability to evaluate temporal GNNs from a distinct perspective compared to existing datasets.

Resources

IGB-SEQ

Temporal Graph Benchmark with Sequential Dynamics

- pip package: `pip install tgb-seq`.
- Website: https://tgb-seq.github.io/, including TGB-Seq leaderboard and documentation.
- GitHub: https://github.com/TGB-Seq/TGB-Seq.

Thank you!

