

GDrag: Towards General-Purpose Interactive Editing with Anti-ambiguity Point Diffusion

Xiaojian Lin^{1*}, Hanhui Li^{1,2*}, Yuhao Cheng³, Yiqiang Yan³, Xiaodan Liang^{1,2,4†}

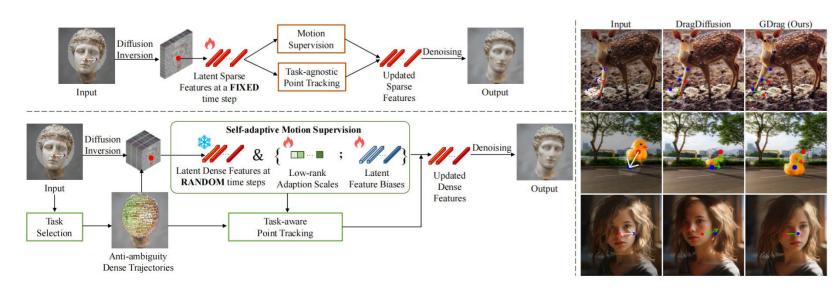
¹Shenzhen Campus of Sun Yat-Sen University ²Guangdong Key Laboratory of Big Data Analysis and Processing ³Lenovo Research ⁴Peng Cheng Laboratory

Introduction

- We propose GDrag, the first optimization-based framework that explicitly models editing tasks to **handle ambiguities**.
- Based on different task types, we propose the **ADT** method to construct a dense dragging point set and calculate their trajectories, which can offer more comprehensive and reasonable prior knowledge for image editing.
- We propose the **SMS** method that introduces task-aware, fine-grained optimization parameters to refine latent features. This allows us to address content ambiguities and improve the quality of edited images.
- Project Page: https://github.com/DaDaY-coder/GDrag

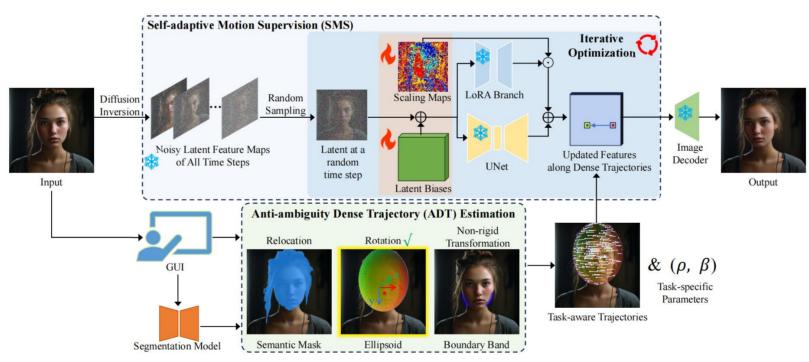
Motivation

- Although current point-based diffusion methods already achieve relatively good editing effects, they still suffer from two types of ambiguities, i.e., intention ambiguity that mixes multiple possible editing tasks into a single trajectory, and content ambiguity that fails to identity and preserve the targets.
- To address the above ambiguity issues, we propose a novel task-aware, optimization-based framework for general-purpose interactive editing, named GDrag.
- Paradigm comparison between previous dragging methods (left-top) and the proposed GDrag method (left-bottom). GDrag estimates task-aware dense trajectories and adopts more fine-grained motion supervision. Hence, GDrag obtains smoother, more reasonable trajectories (labeled in green) and appealing results.

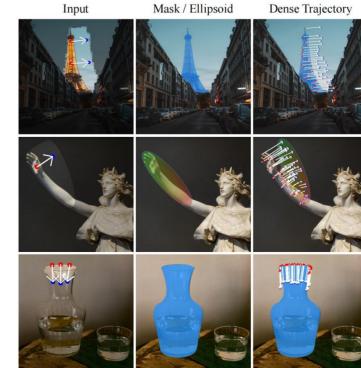


Methodology

The proposed GDrag framework. The key idea of GDrag is to reduce intention and content ambiguities, which is accomplished by the proposed **anti-ambiguity dense trajectory estimation method** (ADT) and the **self-adaptive motion supervision method** (SMS). Given user-specific sparse handle points and the editing task, ADT selects a dense set of points that encode rich contextual information and estimates the corresponding task-aware trajectories. Utilizing these trajectories and a pair of task-specific parameters, the SMS method adjusts the positions and latent features of the dense points by optimizing latent feature biases and scaling maps, thereby achieving fine-grained editing results.



 Visual examples of our generated dense trajectories for diverse tasks, including relocation (top), rotation (middle), and non-rigid transformation (bottom).



Experiments

• We compare GDrag with state-of-the-art methods on the DragBench dataset to validate its effectiveness.

Method	MD↓	LPIPS↓	User Study ↑
DragDiffusion (Shi et al., 2024b)	33.91	0.0940	7.83%
DragonDiffusion (Mou et al., 2024)	31.63	0.1033	10.5%
FreeDrag (Ling et al., 2024)	27.41	0.0996	8.67%
DragNoise (Liu et al., <mark>2024</mark>)	29.56	0.1017	12.67%
GDrag (Ours)	26.49	0.0915	60.33%

 Visual comparison between GDrag and state-of-the-art methods. GDrag achieves more precise manipulations and satisfying results across various editing tasks

