

# PPT: <u>Patch Order Do Matters In</u> Time Series <u>Pretext Task</u>

Jaeho Kim, Kwangryeol Park, Sukmin Yun, Seulki Lee







### Index

#### 1. Introduction

• Challenges in Self-Supervised Time Series.

### 2. Methodology

- PPT: Patch order do matters for time series.
- Consistency and contrastive order learning.
- ACF-CoS metric.

#### 3. Results

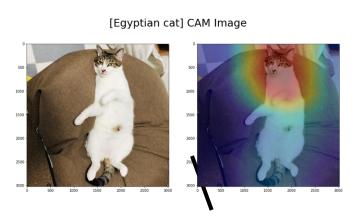
#### 4. Conclusion



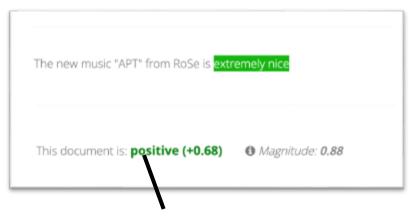
### Introduction



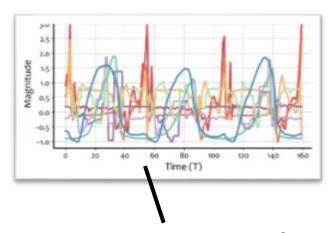
### Time Series are Hard to Understand



- This is an image of a cat.
- It has furs!



- The sentiment here is **positive**.
- It says "extremely nice"



• This is a time series of a ...?

- Unlike images or natural languages, time series are hard to understand as they are.
- They contain signal information (lack semantics) which is hard to interpret.
- They exhibit temporal dependency and multi-channel characteristics.



### Overabundance of Unlabeled Time Series





- Collecting labeled data for time series is expensive.
  - As time series are non-interpretable, a labeler needs to be present during data collection.
  - Crowdsourced data labeling is hard for time series.
  - Most deep learning methodology assumes labeled data.



### What is Self-Supervised Learning (SSL)?

- The model learns from unlabeled data by creating its own supervisory signal.
- This is done by creating a pretext task.

#### Pretext Task

• A pre-designed task for a network to solve in a self-supervised manner.



https://datasciencedojo.com/blog/data-science-memes/



### **Research Questions**

#### Research Points in Time Series SSL

- How can we design tasks that leverage the **temporal characteristics** of time series?
- How can we design tasks that leverage the inter-channel relationship in time series?
- How can we leverage the recent patch-wise methodology in time series?
- How can we design better pretext task designed for time series?



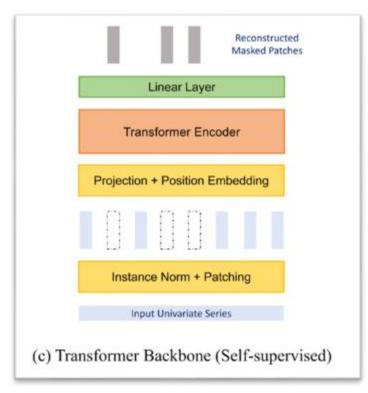
# Methodology



### Motivation

#### Patch-based Representation in Time Series

- Gaining popularity in time series analysis.
  - Local semantic information is preserved.
  - Computation and memory usage is reduced.
- PatchTST [2], PITS [3], Time-LLM [4], etc.,
- Pretext Tasks: Mask and Reconstruction
  - Predominant approach in time series analysis
  - Limitations
    - Does not explicitly model the temporal and channel relationships in time series.



[Figure] PatchTST SSL architecture



### **Previous Works on Time Series SSL**

#### Mask-based Approaches.

- The mainstream approach to self-supervised time series pretext task is mask-modeling.
- We randomly mask partial segments of time series and predict the masked-values.
- PatchTST [5], PITS [6], VQ-MTM[7] all rely on mask-based pretext tasks.

#### Contrastive Approaches.

- Place similar instances close together in the representation space, while dissimilar far apart.
- Previous approaches (e.g., TS-TCC [8], CA-TCC [9], TS-GAC [10]) augment the time instance using weak and strong augmentation, making weak and strong close to each other in representation space.

<sup>[5]</sup> Nie, Yuqi, et al. "A Time Series is Worth 64 Words: Long-term Forecasting with Transformers." The Eleventh International Conference on Learning Representations.

<sup>[6]</sup> Lee, Seunghan, Taeyoung Park, and Kibok Lee. "Learning to Embed Time Series Patches Independently." The Twelfth International Conference on Learning Representations.

<sup>[7]</sup> Gui, Haokun, Xiucheng Li, and Xinyang Chen. "Vector quantization pretraining for eeg time series with random projection and phase alignment." International Conference on Machine Learning. PMLR, 2024.

<sup>[8]</sup> Eldele, Emadeldeen, et al. "Time-Series Representation Learning via Temporal and Contextual Contrasting."

<sup>[9]</sup> Eldele, Emadeldeen, et al. "Self-supervised contrastive representation learning for semi-supervised time-series dassification." IEEE Transactions on Pattern Analysis and Machine Intelligence (2023). [10] Wang, Yucheng, et al. "Graph-Aware Contrasting for Multivariate Time-Series Classification." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 14. 2024.



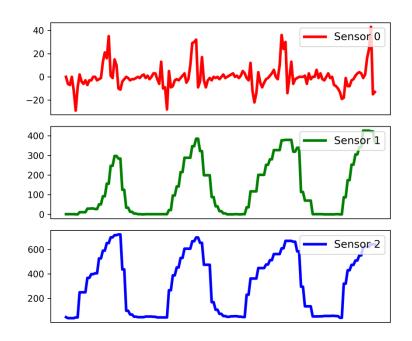
### **PPT: Patch Order Aware Pretext Task**

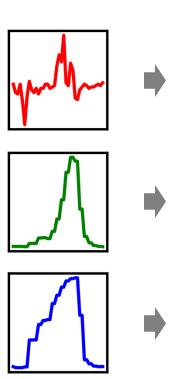
#### Overview of our methodology

- 1. We propose an order-aware pretext task for patch-based time series learning.
  - PPT is applied and assessed on two state-of-the-art patch based models: PatchTST and PITS
- 2. PPT consists of two order-aware learning methods.
  - Consistency Learning and Contrastive Learning.
  - PPT is applicable to both self-supervised and supervised learning.
- 3. We also propose a metric ACF-CoS.
  - ACF-CoS can pre-examine whether a dataset could benefit from PPT.



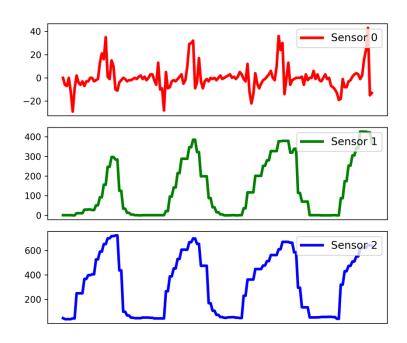
- Can we leverage time series order characteristics?
  - From the below, we can predict a certain order of signals in the **Temporal** axis.
  - The orders of patterns can be predicted.

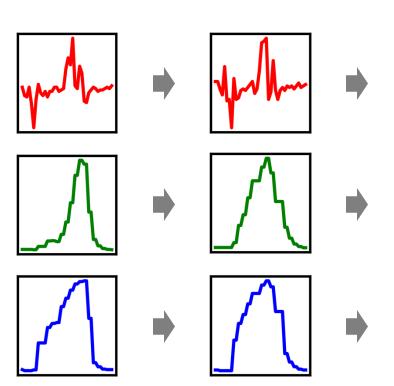






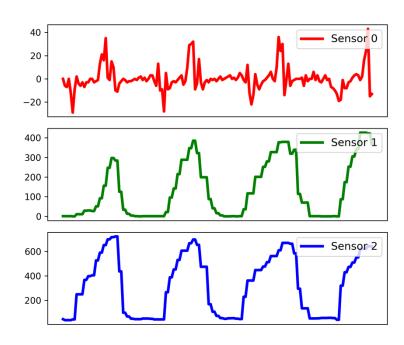
- Can we leverage time series order characteristics?
  - From the below, we can predict a certain order of signals in the **Temporal** axis.
  - The orders of patterns can be predicted.

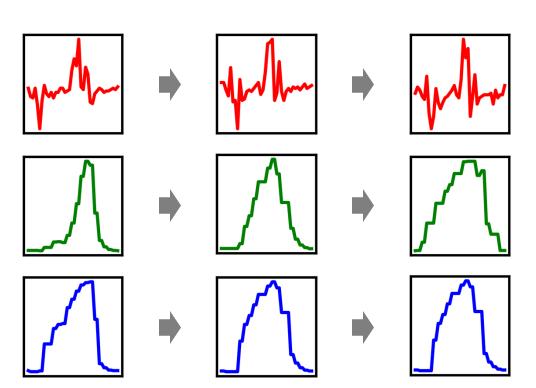






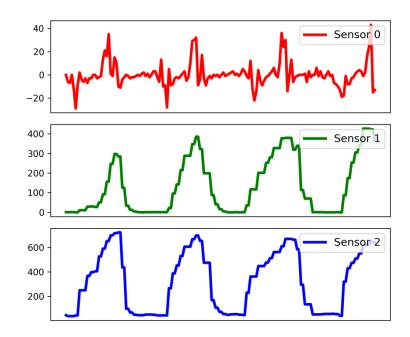
- Can we leverage time series order characteristics?
  - From the below, we can predict a certain order of signals in the **Temporal** axis.
  - The orders of patterns can be predicted.



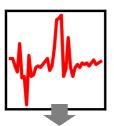




- Can we leverage time series order characteristics?
  - From the below, we can also predict a certain order of signals in the Channel axis.
  - The orders of patterns can be predicted.



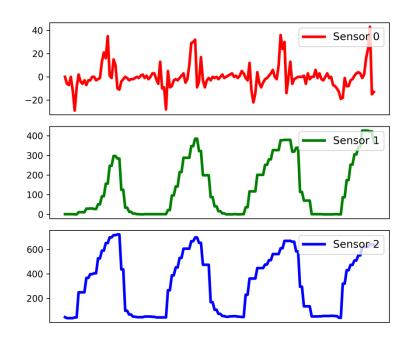


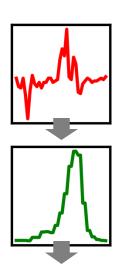


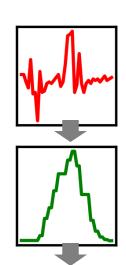


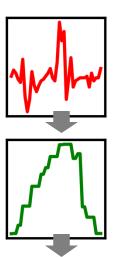


- Can we leverage time series order characteristics?
  - From the below, we can also predict a certain order of signals in the Channel axis.
  - The orders of patterns can be predicted.



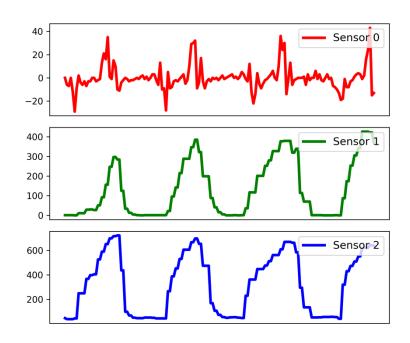


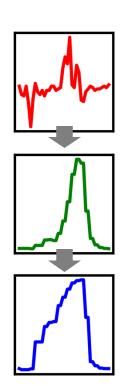


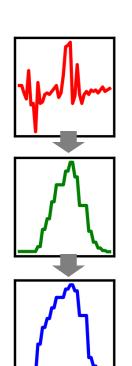


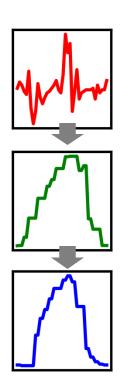


- Can we leverage time series order characteristics?
  - From the below, we can also predict a certain order of signals in the Channel axis.
  - The orders of patterns can be predicted.





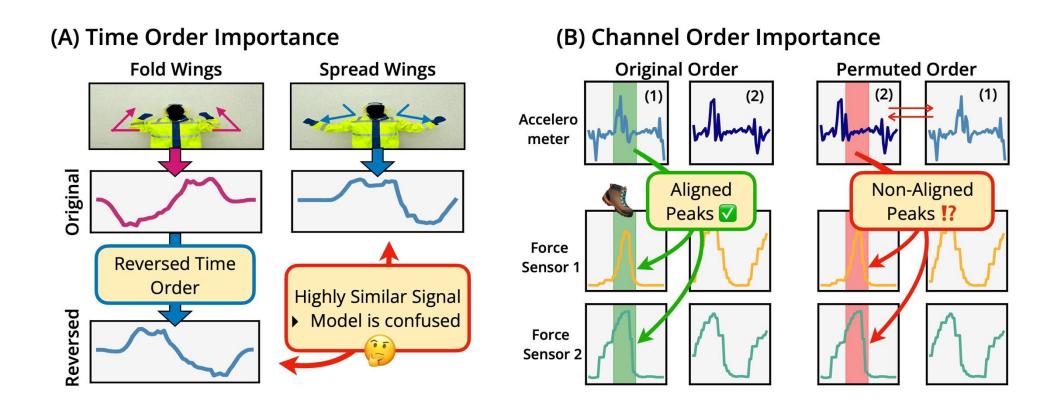






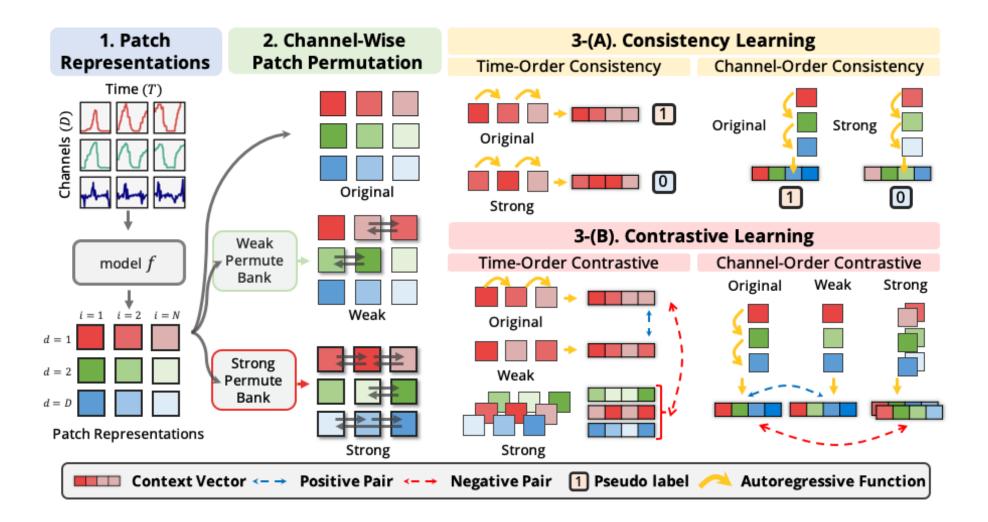
### How can we supervise Order?

- Order-Awareness of Patches
  - Time series patches present a natural order relationship, both in time and channel order.



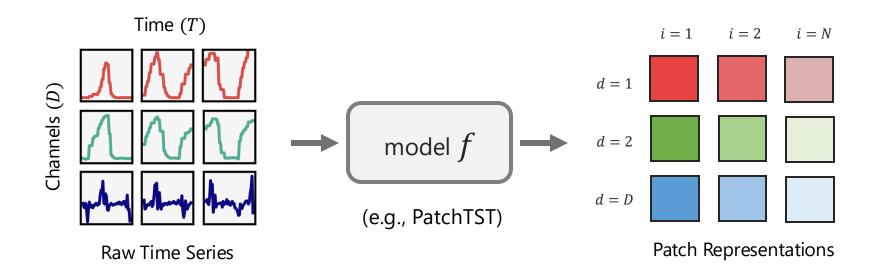


PPT Overview





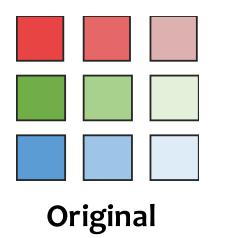
- Step 1. Encoding Time Series into Patches
  - 1. We first reshape time series into patches.
  - 2. Then, encode each patches into representations using patch-based models.
    - E.g., PatchTST, PITS

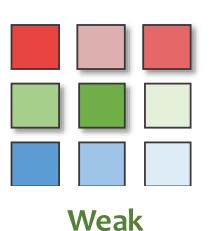


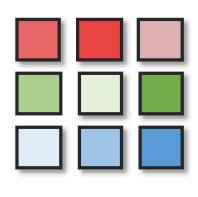


#### • Step 2. Channel-Wise Patch Permutation

- 1. We construct three different sets of patches using permutation banks.
  - Original: The original sequence of patches.
  - Weak: The weakly permuted sequence of patches.
  - Strong: The strongly permuted sequence of patches.





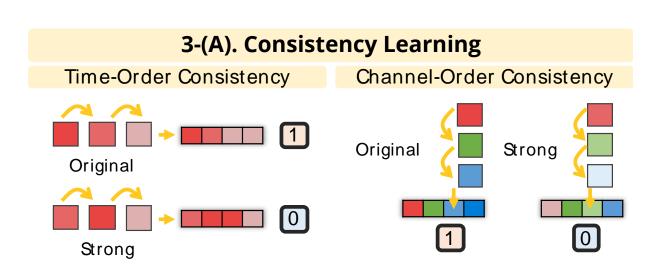




### Step 3-1. Consistency Learning

- 1. Supervision Intuition: Is the given patch sequence order correct?
  - We perform time-order and channel-order consistency learning.
  - We utilize autoregressive models to supervise order consistency.

$$\mathcal{L}_{\text{Time}}^{\text{CS}} \text{ or } \mathcal{L}_{\text{Feature}}^{\text{CS}} = \\ -\frac{1}{m} \sum_{i=1}^{m} [y_i \log(\widehat{y_i}) + (1 - y_i) \log(1 - \widehat{y_i})]$$

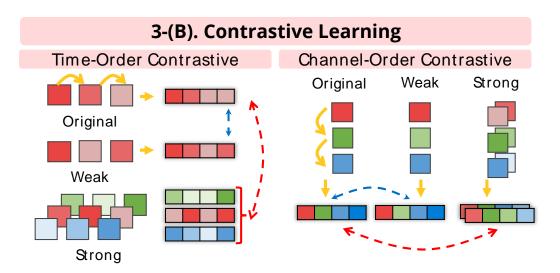




#### Step 3-2. Contrastive Learning

- 1. Supervision Intuition: Weak and Original are similar. But Strong is significantly different.
  - We set the Original and Weak as **Positive Pairs**, and the Strong as **Negative**.

$$\mathcal{L}_{\text{Time}}^{\text{CT}} \text{ or } \mathcal{L}_{\text{Feature}}^{\text{CT}} = -\frac{1}{D} \sum_{d=1}^{D} \log \left( \frac{\exp(sim \left(c_d^{original}, c_d^{weak}\right)/\tau)}{\exp(sim \left(c_d^{original}, c_d^{weak}\right)/\tau)) + \sum_{k=1}^{D} \exp(sim \left(c_d^{original}, c_d^{strong}\right)/\tau))} \right)$$





#### Overall Loss Setup

- 1. Self-Supervised Loss
  - We optimize the consistency and contrastive loss terms only.

$$\mathcal{L}_{Self-Supervised} = \lambda_1 \mathcal{L}_{Sum}^{CS} + \lambda_1 \mathcal{L}_{Sum}^{CT}$$

- 2. Supervised Loss
  - We optimize the two terms along with the task-specific loss  $\mathcal{L}_{\mathrm{T}}$

$$\mathcal{L}_{Supervised} = \mathcal{L}_{T} + \lambda_{1} \mathcal{L}_{Sum}^{CS} + \lambda_{1} \mathcal{L}_{Sum}^{CT}$$



# **ACF-CoS: Measuring Order**

#### Autocorrelation function and Cosine Similarity

- Not all time series benefit from order-awareness
  - Can we pre-assess the effect of PPT prior to model training?
- 2. We propose ACF-CoS
  - We measure the cosine similarity between the autocorrelation of the Original and Strong.
  - If the autocorrelations are similar → Structural order is absent.

$$ACF - CoS = 1 - \frac{\mathbf{a} \cdot \mathbf{a}'}{\|\mathbf{a}\| \|\mathbf{a}'\|}$$

a: Autocorrelation of Original

a': Autocorrelation of Strong



### Results



### Linear-Probing

- The model is learned self-supervised, and linear probing is performed.
- Linear probing fine-tunes only a single linear layer to obtain representation performance.
- We obtain strong performance in all three tasks: EMO, Gilon, PTB.

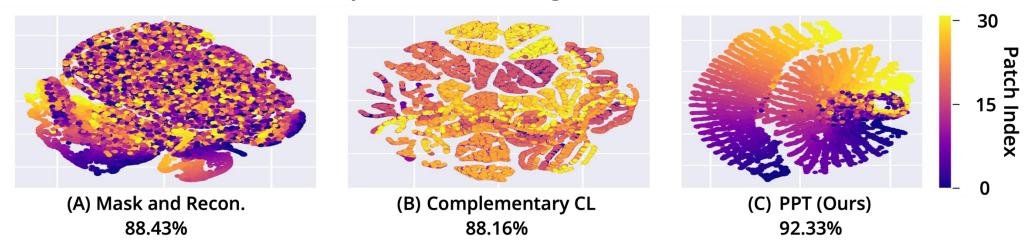
| Dataset    | Models           | Accuracy         | F1 score         | AUROC            | AUPRC            | Precision        | Recall           |
|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|            | Mixing-up        | $74.48 \pm 2.93$ | $49.30 \pm 2.53$ | $71.80 \pm 7.11$ | $52.22 \pm 2.71$ | 51.66±1.81       | 49.36±4.01       |
|            | SimCLR           | $74.42 \pm 4.38$ | $44.64 \pm 6.34$ | $72.71 \pm 7.29$ | $48.34 \pm 6.76$ | $47.83 \pm 7.07$ | $47.19 \pm 8.02$ |
|            | TS2Vec           | $78.08 \pm 2.93$ | $49.07 \pm 3.00$ | $78.00 \pm 3.58$ | $50.95 \pm 3.83$ | $48.97 \pm 3.52$ | $49.87 \pm 2.88$ |
|            | TF-C             | $77.63 \pm 6.18$ | $53.30 \pm 6.90$ | $82.22 \pm 5.31$ | $54.84 \pm 7.18$ | $56.14 \pm 8.79$ | $56.00 \pm 9.07$ |
|            | TS-TCC           | $75.61 \pm 3.49$ | $48.47 \pm 3.59$ | $73.82 \pm 7.40$ | $53.98 \pm 3.77$ | $54.75 \pm 0.67$ | $49.02 \pm 4.05$ |
| EMO        | SimMTM           | $81.75 \pm 3.33$ | $53.08 \pm 3.68$ | $81.35 \pm 7.69$ | $58.70 \pm 4.03$ | $57.75 \pm 4.84$ | $51.62 \pm 4.17$ |
| <b>EMO</b> | TimeMAE*         | $73.97 \pm 2.28$ | $42.44 \pm 2.07$ | $70.11 \pm 4.43$ | $43.25 \pm 2.14$ | $42.81 \pm 2.37$ | $42.43 \pm 2.09$ |
|            | TS-GAC*          | $73.75 \pm 1.66$ | $46.42 \pm 1.29$ | $75.92 \pm 2.30$ | $49.29 \pm 0.62$ | $46.04 \pm 0.87$ | $48.86 \pm 1.69$ |
|            | PatchTST*        | 78.70±0.73       | 45.81±2.07       | 82.60±1.39       | 55.23±2.21       | 59.40±5.32       | 46.35±1.31       |
|            | PatchTST (+PPT)* | $81.92 \pm 0.58$ | $54.19 \pm 2.33$ | 84.74±1.55       | $62.51 \pm 3.09$ | $62.96 \pm 2.49$ | $53.41 \pm 2.42$ |
|            | PITS*            | 69.63±2.04       | 43.73±1.06       | 68.84±2.39       | 43.90±1.05       | 44.07±0.82       | 45.68±1.31       |
|            | PITS (+PPT)*     | $75.55\pm2.84$   | $45.75\pm2.43$   | $68.63 \pm 3.30$ | $45.59 \pm 2.28$ | $45.05\pm2.65$   | $47.53\pm2.06$   |



### Linear-Probing

- t-SNE visualization of representations based on patch indexes.
- We observe better patch index alignment with **PPT**.

#### t-SNE Visualization of Self-Supervised Learning





### Semi-Supervised learning

- Perform self-supervised training, then perform supervised fine-tuning.
- With limited labeled data: 10% and 1%.

| Fraction | Models          | Accuracy         | F1 score         | AUROC            | AUPRC            | Precision        | Recall           |
|----------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|
|          | Mixing-up       | $92.85 \pm 0.69$ | $90.44 \pm 0.91$ | $98.74 \pm 0.26$ | $94.42 \pm 1.14$ | $90.59 \pm 0.65$ | 90.69±0.90       |
|          | SimCLR          | $84.55 \pm 0.78$ | $83.60 \pm 1.21$ | $98.47 \pm 0.20$ | $91.74 \pm 0.83$ | $86.78 \pm 0.62$ | $82.56 \pm 1.16$ |
|          | TS2Vec          | $88.12 \pm 1.58$ | $85.51 \pm 1.13$ | $96.46 \pm 0.78$ | $89.37 \pm 1.87$ | $85.86 \pm 0.69$ | $85.97 \pm 1.71$ |
|          | TF-C            | $83.35 \pm 0.48$ | $82.73 \pm 0.48$ | $97.96 \pm 0.09$ | $87.87 \pm 0.36$ | $83.95 \pm 0.33$ | $82.10 \pm 0.59$ |
|          | TS-TCC          | $93.69 \pm 1.05$ | $92.11 \pm 0.84$ | $99.41 \pm 0.19$ | $97.36 \pm 0.76$ | $93.69 \pm 0.38$ | $91.83 \pm 0.83$ |
| 10%      | <b>TimeMAE</b>  | $90.06 \pm 2.95$ | $91.10 \pm 2.54$ | $98.77 \pm 0.43$ | $94.65 \pm 2.04$ | $91.50 \pm 2.46$ | $90.83 \pm 2.63$ |
|          | SimMTM          | $91.94 \pm 0.58$ | $91.35 \pm 0.53$ | $98.95 \pm 0.35$ | $95.65 \pm 0.62$ | $91.41 \pm 0.44$ | $91.40 \pm 0.65$ |
|          | PatchTST        | 91.61±0.82       | 92.33±0.89       | 99.35±0.11       | 97.10±0.47       | 92.88±0.80       | 92.47±0.75       |
|          | PatchTST (+PPT) | $93.26 \pm 1.57$ | $93.97 \pm 1.40$ | $99.50 \pm 0.09$ | $97.79 \pm 0.47$ | $94.74 \pm 1.23$ | $94.27 \pm 1.34$ |
|          | PITS            | 85.11±3.78       | 85.67±2.21       | 98.18±0.43       | 89.51±2.63       | 84.61±2.35       | 84.60±2.65       |
|          | PITS (+PPT)     | $92.47 \pm 1.06$ | $93.32 \pm 0.60$ | $99.48 \pm 0.12$ | $97.28 \pm 0.78$ | $93.17 \pm 0.69$ | $93.07 \pm 0.46$ |



### Semi-Supervised learning

- Perform self-supervised training, then perform supervised fine-tuning.
- With limited labeled data: 10% and 1%.

|    | Mixup                       | $84.82 \pm 2.17$         | $82.08 \pm 2.85$                     | $97.27 \pm 0.53$         | $87.48 \pm 1.81$         | $83.76 \pm 2.52$         | $81.53 \pm 3.34$                     |
|----|-----------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------|
|    | SimCLR                      | $62.61 \pm 1.89$         | $47.28 \pm 4.56$                     | $90.88 \pm 2.03$         | $66.05 \pm 4.28$         | $63.15 \pm 9.38$         | $51.63 \pm 2.92$                     |
|    | TS2Vec                      | $77.41 \pm 1.33$         | $75.17 \pm 2.85$                     | $96.17 \pm 0.45$         | $82.84 \pm 1.67$         | $79.04 \pm 1.10$         | $74.64 \pm 3.01$                     |
|    | TF-C                        | $65.34 \pm 2.50$         | $52.88 \pm 4.98$                     | $91.19 \pm 1.59$         | $71.15 \pm 3.38$         | $71.92 \pm 4.11$         | $52.95 \pm 3.65$                     |
|    | TS-TCC                      | $85.77 \pm 1.08$         | $83.02 \pm 1.16$                     | $97.82 \pm 0.25$         | $89.85 \pm 1.19$         | $86.31 \pm 2.00$         | $83.04 \pm 1.46$                     |
| 1% | <b>TimeMAE</b>              | $76.09 \pm 2.01$         | $74.63 \pm 3.30$                     | $96.24 \pm 0.53$         | $80.35 \pm 3.35$         | $77.58 \pm 3.69$         | $73.57 \pm 3.61$                     |
|    | SimMTM                      | $78.44 \pm 2.20$         | $79.48 \pm 1.95$                     | $94.93 \pm 0.87$         | $82.75 \pm 1.34$         | $80.66 \pm 2.40$         | $79.31 \pm 1.85$                     |
|    | PatchTST<br>PatchTST (+PPT) | 80.55±2.29<br>84.80±1.68 | 83.26±2.11<br>86.92±1.48             | 96.77±1.04<br>98.08±0.38 | 86.44±2.83<br>90.64±1.90 | 81.50±3.58<br>86.88±1.65 | 81.52±3.58<br>86.75±1.57             |
|    | PITS<br>PITS (+PPT)         | 72.41±2.05<br>81.04±1.86 | $72.81 \pm 4.76$<br>$83.71 \pm 0.95$ | 95.40±0.60<br>97.68±0.30 | 75.92±3.23<br>87.26±1.62 | 69.83±3.77<br>81.25±1.45 | $70.45 \pm 4.71$<br>$82.05 \pm 1.30$ |



# **Supervised Training**

### Supervised training

- We perform supervised training.
- We also perform ablation on each of the loss terms.
- Each of the term contributes to model performance, and has synergistic effects.

| Datase          | t Name                   | •                        | GL HAR SleepEEG             |                             |        | PTB ECG                       |                               |        |                             |                                        |             |
|-----------------|--------------------------|--------------------------|-----------------------------|-----------------------------|--------|-------------------------------|-------------------------------|--------|-----------------------------|----------------------------------------|-------------|
| Models          | $\mathcal{L}^{	ext{CS}}$ | $\mathcal{L}^{	ext{CT}}$ | Original ↑                  | Permuted \                  | Diff ↑ | Original †                    | Permuted \                    | Diff ↑ | Original ↑                  | Permuted \                             | Diff ↑      |
|                 | Х                        | Х                        | 91.6±3.35                   | $88.8{\scriptstyle\pm6.01}$ | 2.76   | 61.6±1.57                     | 58.5±1.51                     | 3.03   | 78.6±2.16                   | $76.3_{\pm 2.79}$                      | 2.28        |
| <b>PatchTST</b> | Х                        | ✓                        | $96.6 \pm 1.00$             | $89.2{\scriptstyle\pm2.76}$ | 7.33   | $61.8 \pm 1.18$               | $58.0 \scriptstyle{\pm 1.03}$ | 3.79   | $78.8{\scriptstyle\pm2.79}$ | $73.7{\scriptstyle\pm1.38}$            | 5.17        |
| (2022)          | ✓                        | X                        | $97.2{\scriptstyle\pm0.40}$ | $89.0_{\pm 4.13}$           | 8.17   | $61.5 \pm 0.61$               | $57.9 \pm 0.94$               | 3.56   | $81.8 \pm 2.48$             | $73.5{\scriptstyle\pm2.29}$            | 8.33        |
|                 | ✓                        | ✓                        | $97.4_{\pm 0.46}$           | $88.7 \pm 2.59$             | 8.65   | $63.5 \pm 0.79$               | $58.7{\scriptstyle\pm0.59}$   | 4.69   | 81.4±2.51                   | $\textbf{72.7} \scriptstyle{\pm 0.91}$ | <b>8.71</b> |
|                 | Х                        | Х                        | 91.6±3.32                   | 85.3±3.34                   | 6.30   | 55.4±1.87                     | 55.1±1.85                     | 0.32   | 82.0±6.67                   | 71.6±0.66                              | 10.4        |
| PITS            | X                        | ✓                        | $92.8{\scriptstyle\pm4.63}$ | $81.0 \pm 8.30$             | 11.8   | 56.3±2.34                     | $55.6{\scriptstyle\pm2.55}$   | 0.65   | $85.1 \pm 2.98$             | $68.9{\scriptstyle\pm6.02}$            | 16.2        |
| (2023)          | ✓                        | X                        | $94.0{\scriptstyle\pm0.68}$ | $87.6{\scriptstyle\pm5.15}$ | 6.40   | $57.4_{\pm 1.22}$             | $56.8{\scriptstyle\pm1.10}$   | 0.66   | 84.0±5.61                   | $71.3{\scriptstyle\pm0.69}$            | 12.7        |
| -               | ✓                        | ✓                        | 96.3±1.19                   | $73.0{\scriptstyle\pm5.29}$ | 23.3   | $59.3 \scriptstyle{\pm 0.87}$ | $57.3{\scriptstyle\pm1.03}$   | 1.95   | 89.5±1.96                   | $65.0{\scriptstyle\pm6.46}$            | 24.6        |

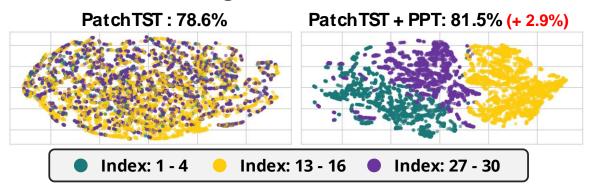


# **Supervised Training**

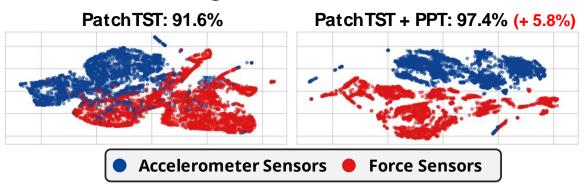
### Supervised training

t-SNE visualization of patches in both time and channel level.

#### A) Patch Embeddings in Time-Level



#### **B) Patch Embeddings in Channel-Level**



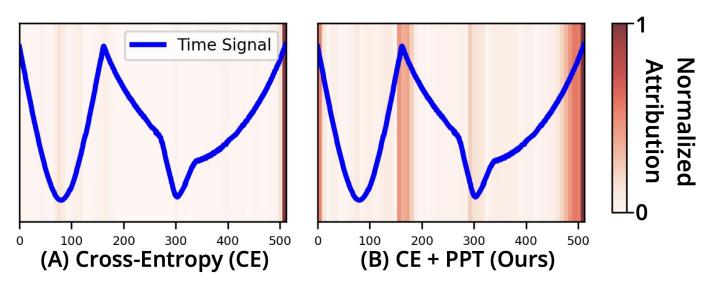


# **Supervised Training**

#### Supervised training

- We compare and visualize the importance of time series patches in model training.
- We observe that incorporating PPT better captures the inflection points in time series.

#### **Attribution Visualization**



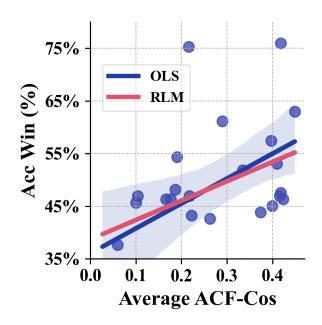


### **ACF-CoS**

#### Correlation between ACF-CoS and PPT

- We measured the performance gain obtained from PPT with 27 tasks from the UEA repository.
- We observe positive correlation between ACF-CoS and PPT.

| <b>UEA Datasets</b>     | ACF-CoS ↑ | Acc. Win% (Wins)↑ | Max CE / Max PPT (Acc) ↑ |  |  |
|-------------------------|-----------|-------------------|--------------------------|--|--|
| Step Function (Order ↑) | 0.902     | -                 | -                        |  |  |
| Cricket                 | 0.418     | 75.9% (123/162)   | 69.4 / <b>72.7</b>       |  |  |
| EigenWorms              | 0.289     | 61.1% (99/162)    | 47.1 / <b>54.5</b>       |  |  |
| NATOPS                  | 0.216     | 75.3% (122/162)   | 70.0 / <b>71.7</b>       |  |  |
| LargeKitchen.           | 0.190     | 54.3% (88/162)    | 64.1 / <b>65.0</b>       |  |  |
| GestureMidAirD1         | 0.186     | 48.1% (78/162)    | 26.2 / <b>31.3</b>       |  |  |
| GestureMidAirD3         | 0.060     | 37.7% (61/162)    | <b>18.2</b> / 16.9       |  |  |
| White Noise (Order ↓)   | 0.001     | -                 | -                        |  |  |





### **PPT Conclusion**

- PPT is an order-aware self-supervised method for time series
  - Supervises the order of patches in both time and channel dimension.
- PPT is a plug-in method for any patch-based models
  - PPT works with any patch-based models that can represent each patches independently.
- PPT shows strong performance
  - We show that incorporating order-awareness can enhance model performance.
  - We show ways to identify which time series tasks can benefit from PPT.



### Thank you! Any questions?

Jaeho Kim, Ph.D. Student kjh3690@unist.ac.kr



Artificial Intelligence Graduate School (AIGS)
Ulsan National Institute of Science and Technology (UNIST)