AnoLLM: Large Language Models for Tabular Anomaly Detection

Amazon

Presenter: Che-Ping Tsai

Joint work with Ganyu Teng, Phil Wallis and Wei Ding

Motivation (1)

 Anomaly detection (AD) on tabular data has a wide range of applications.

Cyber-attack prevention

Fraudulent financial transaction detection

Unusual medical condition detection

Motivation (2)

- LLMs excel in NLP tasks.
- They perform well in other modalities (e.g., vision, tabular data).
- Tabular anomaly detection remains unexplored.

Motivation (2)

- LLMs excel in NLP tasks.
- They perform well in other modalities (e.g., vision, tabular data).
- Tabular anomaly detection remains unexplored.

Investigate the capabilities of LLMs in tabular anomaly detection.

Motivation (2)

- LLMs excel in NLP tasks.
- They perform well in other modalities (e.g., vision, tabular data).
- Tabular anomaly detection remains unexplored.

We show that **LLMs outperform existing AD methods** when data contain **mixed-typed features**!

Challenges in applying LLMs to tabular AD(1)

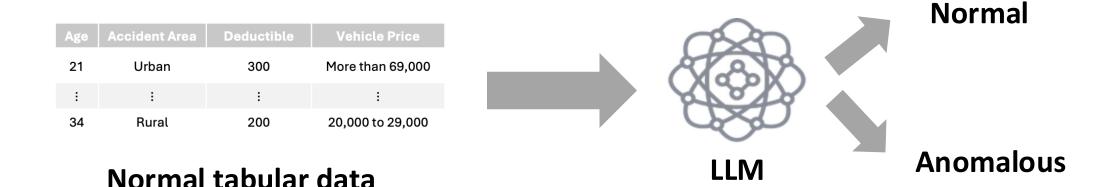
- Tabular data is inherently structured.
- However, LLMs only take sequential inputs.

Age	Accident Area	Deductible	Vehicle Price
21	Urban	300	More than 69,000
:	:	÷	i
34	Rural	200	20,000 to 29,000

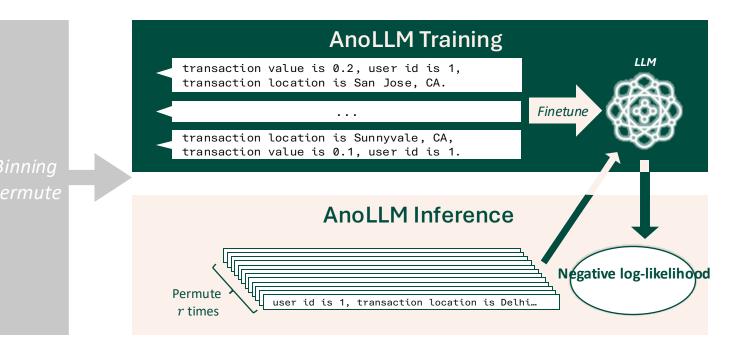
An example of Tabular data

Challenges in applying LLMs to tabular AD(2)

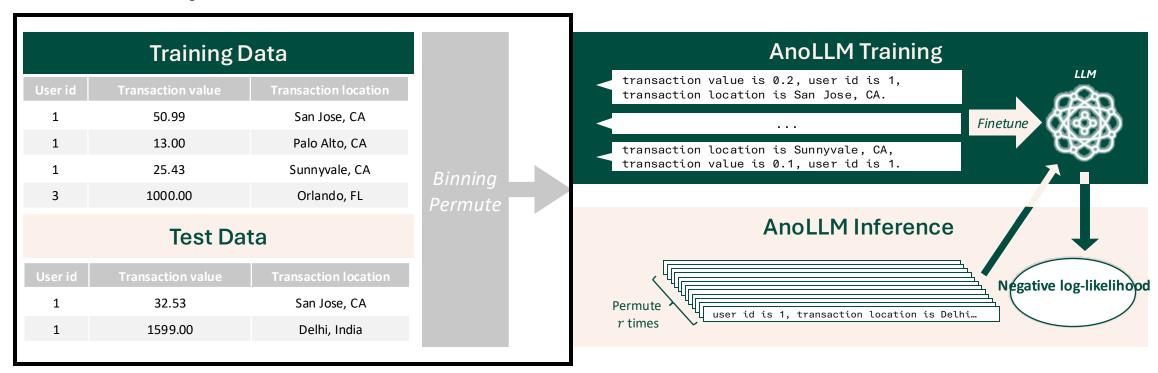
AD is unsupervised that does not have labels.



Training Data								
User id	Transaction value	Transaction location						
1	50.99	San Jose, CA						
1	13.00	Palo Alto, CA						
1	25.43	Sunnyvale, CA						
3	1000.00	Orlando, FL						
Test Data								
User id	Transaction value	Transaction location						
1	32.53	San Jose, CA						
1	1599.00	Delhi, India						



Step 1: Serialization

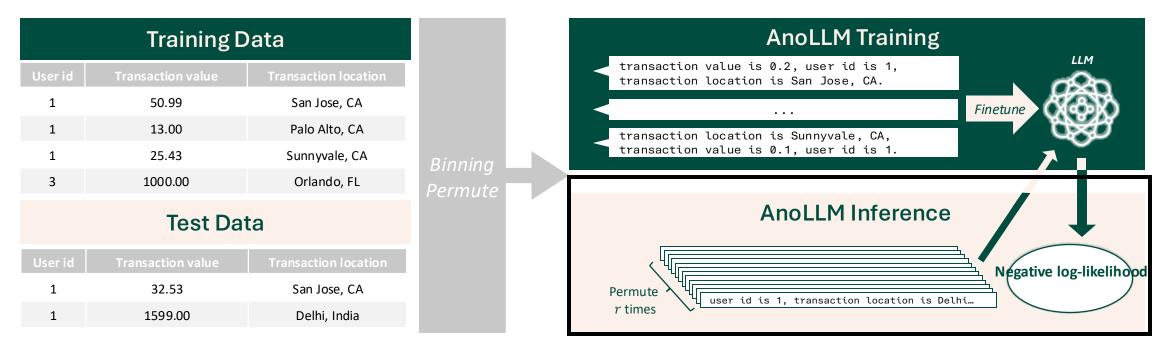


• Transform each row of data into a **sequence** of words.

AnoLLM Training Training Data LLM transaction value is 0.2, user id is 1, transaction location is San Jose, CA. 1 50.99 San Jose, CA Finetune Palo Alto, CA 13.00 transaction location is Sunnyvale, CA, transaction value is 0.1, user id is 1. 25.43 Sunnyvale, CA Orlando, FL 1000.00 Permute **AnoLLM Inference Test Data** Negative log-likelihood 32.53 San Jose, CA Permute user id is 1, transaction location is Delhi. r times Delhi. India 1599.00

Step 2: Fine-tuning LLM

• Fit the serialized tabular data via next-token-prediction.



Step 3: Computing anomaly scores

Use normalized output probabilities as anomaly scores.

Experimental Results

Methods \ Datasets	Fake job posts	Fraud ecommerce	Lympho- graphy	Seismic	Vehicle insurance	20news groups	Average		
Classical methods									
Iforest	0.755	0.501	0.673	0.692	0.496	0.623	0.623		
PCA	0.724	0.647	0.826	0.692	0.509	0.623	0.670		
KNN	0.636	1	0.860	0.738	0.524	0.605	0.727		
ECOD	0.512	0.755	0.830	0.692	0.509	0.62	0.653		
	Deep learning based methods								
DeepSVDD	0.561	1	0.899	0.713	0.505	0.597	0.713		
RCA	0.629	1	0.919	0.727	0.531	0.546	0.725		
SLAD	0.603	0.998	0.964	0.714	0.556	0.64	0.746		
GOAD	0.566	0.998	0.817	0.717	0.512	0.63	0.707		
NeuTral	0.548	1	0.847	0.681	0.507	0.658	0.707		
ICL	0.699	1	0.827	0.719	0.501	0.671	0.736		
DTE	0.548	1	0.909	0.714	0.512	0.6	0.714		
REPEN	0.653	1	0.808	0.724	0.513	0.574	0.712		
AnoLLM									
SmolLM-135M	0.800	1	0.968	0.712	0.569	0.766	0.803		
SmolLM-360M	0.814	1	0.995	0.746	0.555	0.752	0.810		

Table 2: AUC-ROC scores for all methods on the six datasets containing mixed types of features.

• AnoLLM performs the best on the six datasets containing mixed type of features.

Thanks for listening!

Welcome to our poster for more information!