LoRA-X: Bridging Foundation Models with Training-Free Cross-Model Adaptation

Farzad Farhadzadeh, Senior Staff Engineer, Qualcomm Technologies Inc.

Debasmit Das, Staff Engineer, Qualcomm Technologies Inc.

Shubhankar Borse, Staff Engineer, Qualcomm Technologies Inc.

Fatih Porikli, Sr Director, Qualcomm Technologies Inc.

Setup

Introduction:

- LoRA refers to low-rank adaptations of large language/vision models, designed to address the challenges of fine-tuning large models.
- LoRA can be applied to the cross-attention layers within a Stable Diffusion model, allowing it to relate image representations with the prompts that describe them.

LoRA advantages:

Training is much faster, Compute requirements are lower, Trained weights are much smaller

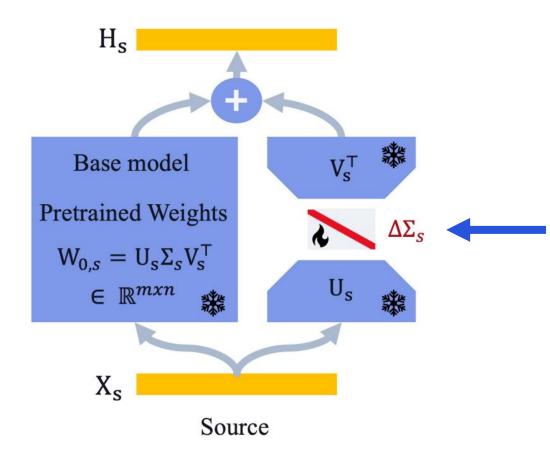
Motivation:

- Several LoRA adaptors are publicly available (without sharing dataset and training strategy)
- Stable Diffusion (SD) community keeps introducing new SD models

Goal:

 Distill knowledge from adapted Teacher model to Student model of different architecture and/or different sampling steps without having access to LoRA dataset.

Train LoRA-X on source model

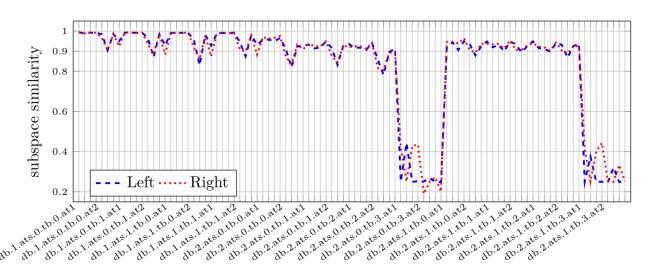


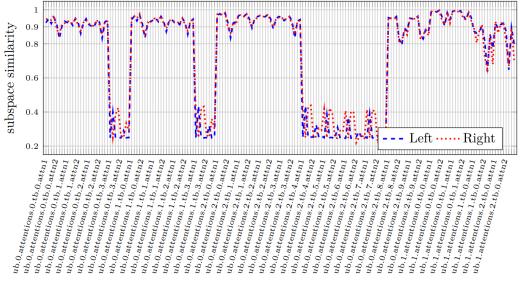
Only singular values are updated

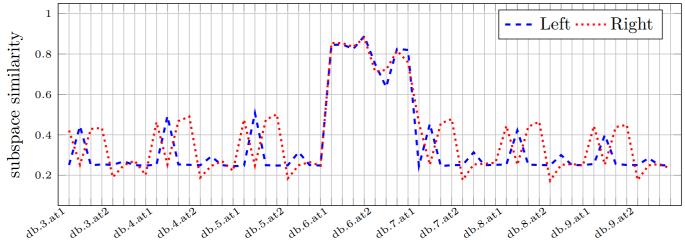
This is done to make sure adapter update
lies in subspace of pretrained weights and
ensure better transferability.

Find subspace similarity between source & target modules

$$\Phi_l(A,B) = \frac{\|\boldsymbol{A}^{\top}\boldsymbol{B}\|_F^2}{\|\boldsymbol{A}^{\top}\boldsymbol{A}\|_F\|\boldsymbol{B}^{\top}\boldsymbol{B}\|_F} = \frac{\sum_i \sum_j \sigma_A^i \sigma_B^j \langle \boldsymbol{u}_A^i, \boldsymbol{u}_B^j \rangle^2}{\sqrt{\sum_i (\sigma_A^i)^2} \sqrt{\sum_i (\sigma_B^i)^2}}$$

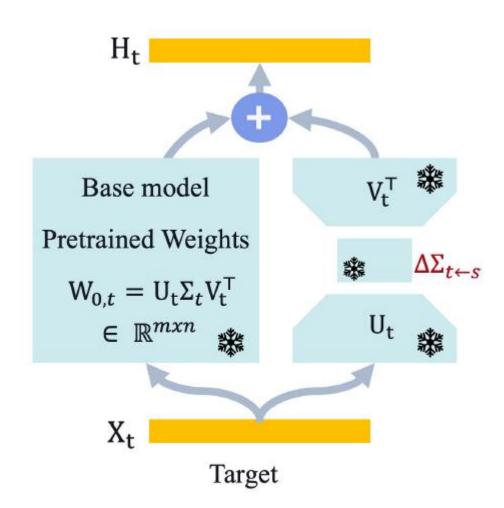






Method

Transfer LoRA-X from source and target



Given

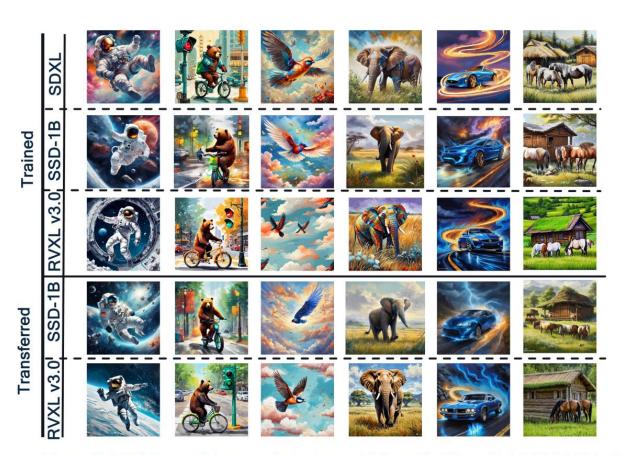
$$egin{pmatrix} oldsymbol{W}_{s,0} &= oldsymbol{U}_s oldsymbol{\Sigma}_s oldsymbol{V}_s^ op \ oldsymbol{W}_t &= oldsymbol{U}_t oldsymbol{\Sigma}_t oldsymbol{V}_t^ op \ \Delta oldsymbol{W}_s &= ilde{oldsymbol{U}}_s \Delta oldsymbol{\Sigma}_s ilde{oldsymbol{V}}_s^ op \end{pmatrix}$$

Same size LoRA across source & target

$$egin{aligned} \Delta oldsymbol{W}_{t \leftarrow s} &= oldsymbol{U}_t oldsymbol{U}_t^ op \Delta oldsymbol{W}_s oldsymbol{V}_t oldsymbol{V}_t^ op \ &= oldsymbol{U}_t oldsymbol{U}_t^ op oldsymbol{U}_s \Delta oldsymbol{\Sigma}_s oldsymbol{ ilde{V}}_s^ op oldsymbol{V}_t^ op oldsymbol{V}_t^ op &= oldsymbol{U}_t \Delta oldsymbol{\Sigma}_{t \leftarrow s} oldsymbol{V}_t^ op \end{aligned}$$

$$m \neq m'$$
 $\tilde{\boldsymbol{U}}_s = \boldsymbol{U}_t \boldsymbol{U}_s^{\top} (\boldsymbol{U}_s \boldsymbol{U}_s^{\top})^{-1} \boldsymbol{U}_s$
 $n \neq n'$ $\tilde{\boldsymbol{V}}_s = \boldsymbol{V}_s (\boldsymbol{V}_s^{\top} \boldsymbol{V}_s)^{-1} \boldsymbol{V}_s^{\top} \boldsymbol{V}_t$

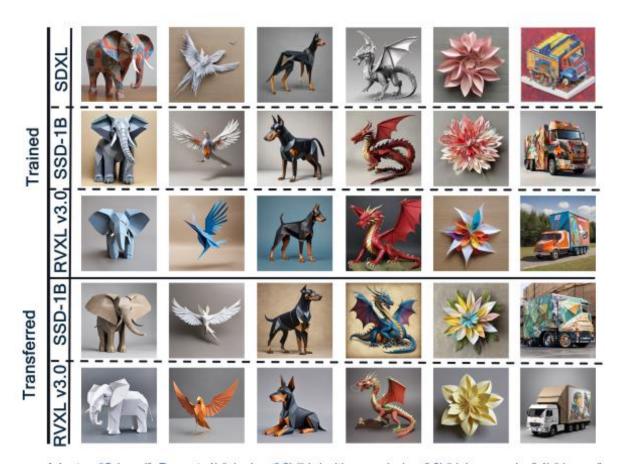
Qualitative Results



Adapter: "Painting", Prompt: 1) "astronaut floating in space" 2) "bear riding bike, traffic light" 3) "bird flying in the sky" 4) "elephant in a grassland" 5) "car on a winding road, mean headlights, thunderstorms, blue flames" 6) "horses eating grass, wooden hut".

Adapter: "Painting", Prompt: 1) "astronaut floating in space" 2) "bear riding bike, traffic light" 3) "bird flying in the sky" 4) "elephant in a grassland" 5) "horses eating grass, wooden hut" 6) "wild dolphins swimming".

Qualitative Results



Adapter: "Origami", Prompt: 1) "elephant" 2) "bird with spread wings" 3) "doberman dog" 4) "dragon" 5) "flower" 6) "truck".

Adapter: "Origami", Prompt: 1) "elephant" 2) "bird with spread wings" 3) "doberman dog" 4) "dragon" 5) "flower" 6) "truck".

Quantitative Results

Table 1: Evaluation of LoRA-X trained from scratch on base models versus training-free transferred LoRA-X from a source model into a target model. LoRA-X modifies the 320 largest singular values of the pre-trained weights. Results are averaged over 30 seeds.

Datasets	Base Model	Adapter	Training-Free	HPSv2 (↑)	LPIPS diversity (\uparrow)	DINOv2 (†)
BlueFire (900 images)	RealVis-v3.0	Trained Transferred	✓	0.331 0.332 (+ 0.3 %)	$0.524 \\ 0.540 \; (+2.9\%)$	0.882
	SD Eff-v1.0	Trained Transferred	✓	0.296 0.307 (+ 3.6 %)	$0.534 \\ 0.538 \; (+0.7\%)$	0.851
	RealVisXL-v3.0	Trained Transferred	✓	0.319 0.319 (0.0 %)	$0.484 \\ 0.456 \; (-\mathbf{6.1\%})$	0.947
	SSD-1B	Trained Transferred	✓	$\begin{array}{c c} 0.316 \\ 0.300 \ (-5.3\%) \end{array}$	$0.428 \\ 0.392 \ (-8.4\%)$	0.969
Paintings (630 images)	RealVis-v3.0	Trained Transferred	✓	0.319 0.329 (+ 3.0 %)	$0.502 \\ 0.441 \ (-11.8\%)$	0.928
	SD Eff-v1.0	Trained Transferred	✓	$\begin{array}{c c} 0.298 \\ 0.292 \ (-2.0\%) \end{array}$	$0.485 \\ 0.476 \; (-2.0\%)$	0.820
	RealVisXL-v3.0	Trained Transferred	✓	$\begin{array}{c c} 0.333 \\ 0.325 \ (-2.5\%) \end{array}$	$0.467 \\ 0.421 \ (-9.6\%)$	0.945
	SSD-1B	Trained Transferred	✓	$\begin{array}{ c c c }\hline 0.319 \\ 0.320 \ (+\mathbf{0.3\%}) \end{array}$	$0.409 \\ 0.355 \; (-13.2\%)$	0.961

Table 2: LoRA-X subspace constraint effect on transferability of style adapter. BlueFire dataset, SD-v1.5 as the source model and SD Eff-v1.0 as the target.

Method	Adapter	Rank	HPSv2 (↑)	LPIPS diversity (↑)	DINOv2 (†)	Total size (MB)
LoRA-X	Trained Transferred	320	0.2958 0.3073 (+ 3.7 %)	0.5340 0.5376 (+ 0.6 %)	0.8513	0.16
	Trained Transferred	32	0.3153 0.2466 (-27.8 %)	0.5049 0.4834 (-4.4 %)	0.8471	34.07
LoRA	Trained Transferred	16	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.5248 \ 0.5224 \ (-0.5\%)$	0.8266	17.08
	Trained Transferred	1	$ \begin{vmatrix} 0.2650 \\ 0.2355 & (-12.5\%) \end{vmatrix} $	$0.5312 \ 0.5274 \ (-0.7\%)$	0.8228	1.15

Quantitative Results

Table 3: Transferability of style adapters DoRA & FouRA. For DoRA, SDXL is the source model and SSD-1B is the target model. For FouRA, SD-v1.5 is the source model and SD Eff-v1.0 is the target model.

Method	Adapter	Rank	Dataset	HPSv2 (↑)	LPIPS diversity (\uparrow)	DINOv2 (↑)
DoRA	Trained Transferred	8	Paintings	0.3042 0.2764 (-9.1 %)	0.4624 $0.4526 \; (-2.1\%)$	0.9138
DoRA	Trained Transferred	8	Origami	$\begin{array}{c} 0.2491 \\ 0.2224 \ (-10.7\%) \end{array}$	0.3408 $0.3073 (-9.8%)$	0.9441
FouRA	Trained Transferred	64	Paintings	0.3034 0.2891 (- 4.7 %)	0.4686 0.4446 (- 5.1 %)	0.9153

Table 4: Evaluation of training-free transferred LoRA-X from SSD-1B to SDXL versus LoRA-X trained on SDXL from scratch using BlueFire dataset using our training-free transfer method and training-based X-adapter. Wall clock time is measured on A100 GPU

Method	${f Adapter}$	HPSv2 (↑)	LPIPS diversity (\uparrow)	DINOv2 (↑)	Time (\downarrow)
LoRA-X	Trained	0.306	0.422	0.953	3.7s
	Transferred	0.279 (-9.5%)	$0.433 \ (+2.6\%)$	0.955	
X-Adapter	Trained	0.306	0.422	0.892	17.1 s
	Transferred	0.282 (-7.8%)	$0.406 \; (-3.7\%)$	0.032	17.15

Conclusion

Training free transfer of LoRA-X produces similar performance as training from scratch

LoRA-X transfer also works better across other adapter types

LoRA-X transfer also works better than existing transfer types like X-adapter, Copying

Thank you

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

© Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm and Snapdragon are trademarks or registered trademarks of Qualcomm Incorporated.

Other products and brand names may be trademarks or registered trademarks of their respective owners.

substantially all of our products and services businesses, including our QCT semiconductor business.

References in this presentation to "Qualcomm" may mean Qualcomm Incorporated,

Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of our engineering, research and development functions, and

Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries. Qualcomm patents are licensed by Qualcomm Incorporated.

