

Yinuo Ren<sup>1</sup>, Haoxuan Chen<sup>1</sup>, Grant M. Rotskoff<sup>3,1</sup>, Lexing Ying<sup>2,1</sup> {vinuoren, haoxuanc, rotskoff, lexing}@stanford.edu

<sup>1</sup>ICME <sup>2</sup>Department of Mathematics <sup>3</sup>Department of Chemistry Stanford University

April 1, 2025

#### How Discrete and Continuous Diffusion Meet:

Comprehensive Analysis of Discrete Diffusion Models via a Stochastic Integral Framework 1 Diffusion Models: an Introduction

2 A Stochastic Integral Framework for Discrete DMs

3 Main Results: Theoretical Guarantees of Inference Algorithms

# Section 1: **Diffusion Models: an Introduction**

#### **Diffusion Models**

#### Introduction







(a) DALLE 3

(b) Stable Diffusion

(c) AI4Science

Figure: Diffusion and flow-based generative models have exerted huge impacts on scientific research in many fields.

**> Task:** Sample from data distribution  $p_0$  accurately and efficiently

- **Task:** Sample from data distribution  $p_0$  accurately and efficiently
- > Forward SDE:

$$\mathrm{d}\boldsymbol{x}_s = \boldsymbol{\beta}_s(\boldsymbol{x}_s)\mathrm{d}s + \boldsymbol{\sigma}_s\mathrm{d}\boldsymbol{w}_s, \quad \text{with} \quad \boldsymbol{x}_0 \sim p_0$$

- **Task:** Sample from data distribution  $p_0$  accurately and efficiently
- Forward SDF:

$$\mathrm{d}\boldsymbol{x}_s = \boldsymbol{\beta}_s(\boldsymbol{x}_s)\mathrm{d}s + \boldsymbol{\sigma}_s\mathrm{d}\boldsymbol{w}_s, \quad \text{with} \quad \boldsymbol{x}_0 \sim p_0$$

**Backward SDF:** 

$$d\bar{\boldsymbol{x}}_t = \left[ -\dot{\boldsymbol{\beta}}_t(\bar{\boldsymbol{x}}_t) + \frac{\boldsymbol{\dot{\sigma}}_t \boldsymbol{\dot{\sigma}}_t^\top + \boldsymbol{\dot{v}}_t \boldsymbol{\dot{v}}_t^\top}{2} \nabla \log \bar{\boldsymbol{p}}_t(\bar{\boldsymbol{x}}_t) \right] dt + \boldsymbol{\dot{v}}_t d\boldsymbol{w}_t$$

with 
$$\overline{p}_0 = p_T pprox \mathcal{N}(\mathbf{0}, \boldsymbol{I})$$
 and  $\overline{p}_T = p_0$ 

- **Task:** Sample from data distribution  $p_0$  accurately and efficiently
- Forward SDE:

$$\mathrm{d}\boldsymbol{x}_s = \boldsymbol{\beta}_s(\boldsymbol{x}_s)\mathrm{d}s + \boldsymbol{\sigma}_s\mathrm{d}\boldsymbol{w}_s, \quad \text{with} \quad \boldsymbol{x}_0 \sim p_0$$

**Backward SDF:** 

$$d\bar{\boldsymbol{x}}_t = \left[ -\dot{\boldsymbol{\beta}}_t(\bar{\boldsymbol{x}}_t) + \frac{\dot{\boldsymbol{\sigma}}_t \dot{\boldsymbol{\sigma}}_t^\top + \dot{\boldsymbol{v}}_t \dot{\boldsymbol{v}}_t^\top}{2} \nabla \log \bar{p}_t(\bar{\boldsymbol{x}}_t) \right] dt + \bar{\boldsymbol{v}}_t d\boldsymbol{w}_t$$

with  $\bar{p}_0 = p_T \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$  and  $\bar{p}_T = p_0$ 

**Score Function**:  $s_t^{\theta}(x_t) \approx \nabla \log p_t(x_t)$  by optimizing

$$\mathcal{L}(\theta) = \int_{0}^{T} \psi_{t} \mathbb{E}_{\boldsymbol{x}_{t} \sim p_{t}} \left[ \left\| \nabla \log p_{t}(\boldsymbol{x}_{t}) - \boldsymbol{s}_{t}^{\theta}(\boldsymbol{x}_{t}) \right\|^{2} \right] dt$$

- **Task:** Sample from data distribution  $p_0$  accurately and efficiently
- Forward SDE:

$$\mathrm{d}\boldsymbol{x}_s = \boldsymbol{\beta}_s(\boldsymbol{x}_s)\mathrm{d}s + \boldsymbol{\sigma}_s\mathrm{d}\boldsymbol{w}_s, \quad \text{with} \quad \boldsymbol{x}_0 \sim p_0$$

**Backward SDE:** 

$$\mathrm{d}\boldsymbol{\bar{x}}_t = \left[ -\boldsymbol{\bar{\beta}}_t(\boldsymbol{\bar{x}}_t) + \frac{\boldsymbol{\bar{\sigma}}_t \boldsymbol{\bar{\sigma}}_t^\top + \boldsymbol{\bar{v}}_t \boldsymbol{\bar{v}}_t^\top}{2} \nabla \log \boldsymbol{\bar{p}}_t(\boldsymbol{\bar{x}}_t) \right] \mathrm{d}t + \boldsymbol{\bar{v}}_t \mathrm{d}\boldsymbol{w}_t$$

with  $\bar{p}_0 = p_T \approx \mathcal{N}(\mathbf{0}, \mathbf{I})$  and  $\bar{p}_T = p_0$ 

**Score Function**:  $s_t^{\theta}(x_t) \approx \nabla \log p_t(x_t)$  by optimizing

$$\mathcal{L}(\theta) = \int_{0}^{T} \psi_{t} \mathbb{E}_{\boldsymbol{x}_{t} \sim p_{t}} \left[ \left\| \nabla \log p_{t}(\boldsymbol{x}_{t}) - \boldsymbol{s}_{t}^{\theta}(\boldsymbol{x}_{t}) \right\|^{2} \right] dt$$

Implementations: SDE ( $v_t = \sigma_t$ ), Probability Flow ODE (PF-ODE,  $v_t \equiv 0$ )

Take  $oldsymbol{eta}_s(oldsymbol{x}_s) = -0.5oldsymbol{x}_s$  and  $oldsymbol{\sigma}_s = oldsymbol{I}$ :

**> Forward SDE:**  $\mathrm{d} m{x}_s = -\frac{1}{2} m{x}_s \mathrm{d} s + \mathrm{d} m{w}_s$  with  $m{x}_0 \sim p_0$ 

Take  $oldsymbol{eta}_s(oldsymbol{x}_s) = -0.5oldsymbol{x}_s$  and  $oldsymbol{\sigma}_s = oldsymbol{I}$ :

- ightharpoonup Forward SDE:  $\mathrm{d} m{x}_s = -\frac{1}{2} m{x}_s \mathrm{d} s + \mathrm{d} m{w}_s$  with  $m{x}_0 \sim p_0$
- **> Backward SDE:**  $\mathrm{d}\bar{x}_t = \left[\frac{1}{2}\bar{x}_t + \frac{1+\upsilon^2}{2}\nabla\log\bar{p}_t(\bar{x}_t)\right]\mathrm{d}t + \upsilon\mathrm{d}\boldsymbol{w}_t$ , with  $\bar{p}_0 = p_T \approx \mathcal{N}(\boldsymbol{0},\boldsymbol{I})$  and  $\bar{p}_T = p_0$

Take  $\boldsymbol{\beta}_s(\boldsymbol{x}_s) = -0.5\boldsymbol{x}_s$  and  $\boldsymbol{\sigma}_s = \boldsymbol{I}$ :

- ightharpoonup Forward SDE:  $\mathrm{d} m{x}_s = -rac{1}{2}m{x}_s\mathrm{d} s + \mathrm{d} m{w}_s$  with  $m{x}_0 \sim p_0$
- **> Backward SDE:**  $\mathrm{d} \ddot{\boldsymbol{x}}_t = \left[\frac{1}{2}\ddot{\boldsymbol{x}}_t + \frac{1+v^2}{2}\nabla\log \ddot{p}_t(\ddot{\boldsymbol{x}}_t)\right]\mathrm{d}t + v\mathrm{d}\boldsymbol{w}_t$ , with  $\ddot{p}_0 = p_T \approx \mathcal{N}(\boldsymbol{0},\boldsymbol{I})$  and  $\ddot{p}_T = p_0$

#### Theorem (Error Analysis of Continuous Diffusion Models)

Suppose  $t_0=0\leq \cdots \leq t_N=T-\delta$  satisfies  $t_{k+1}-t_k\leq \kappa(T-t_{k+1})$  and

$$\sum_{k=0}^{N-1} (s_{k+1} - s_k) \mathbb{E}_{\bar{\boldsymbol{x}}_{s_k} \sim \bar{\boldsymbol{p}}_{s_k}} \left[ \left\| \nabla \log \bar{\boldsymbol{p}}_{s_k}(\bar{\boldsymbol{x}}_{s_k}) - \tilde{\bar{\boldsymbol{s}}}_{s_k}^{\theta}(\boldsymbol{x}_{s_k}) \right\|^2 \right] \leq \epsilon.$$

Then with

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon\log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^2(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta} \| \widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

#### Theorem (Error Analysis of Continuous Diffusion Models)

With

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon\log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^2(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta}||\widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

#### Theorem (Error Analysis of Continuous Diffusion Models)

With

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon\log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^2(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta} \| \widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

**Truncation Error:** Error caused by approximating  $p_T$  by  $p_{\infty}$ , of the order  $\mathcal{O}(d\exp(-T))$ :

#### Theorem (Error Analysis of Continuous Diffusion Models)

With

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon\log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^2(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta} \| \widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

- **Truncation Error:** Error caused by approximating  $p_T$  by  $p_{\infty}$ , of the order  $\mathcal{O}(d\exp(-T))$ ;
- **Approximation Error:** Error caused by approximating  $\nabla \log p_t(x_t)$  by NN  $\hat{s}_{t}^{\theta}(x_{t})$ , assumed to be of  $\mathcal{O}(\epsilon)$ ;

#### Theorem (Error Analysis of Continuous Diffusion Models)

With

$$T = \mathcal{O}(\log(d\epsilon^{-1})), \ \kappa = \mathcal{O}(d^{-1}\epsilon\log^{-1}(d\epsilon^{-1})), \ N = \mathcal{O}(d\epsilon^{-1}\log^{2}(d\epsilon^{-1})),$$

we have

$$D_{\mathrm{KL}}(p_{\delta}||\widehat{q}_{t_N}) \lesssim de^{-T} + \epsilon + d\kappa T \lesssim \epsilon.$$

- > Truncation Error: Error caused by approximating  $p_T$  by  $p_{\infty}$ , of the order  $\mathcal{O}(d\exp(-T))$ ;
- **Approximation Error:** Error caused by approximating  $\nabla \log p_t(\boldsymbol{x}_t)$  by NN  $\hat{\boldsymbol{s}}_t^{\theta}(\boldsymbol{x}_t)$ , assumed to be of  $\mathcal{O}(\epsilon)$ :
- Discretization Error: Error caused by numerically solving the backward SDE

**Task:** Sample from discrete data distribution  $p_0 \in \Delta^{|\mathcal{X}|}$ 

- **> Task:** Sample from discrete data distribution  $p_0 \in \Delta^{|\mathcal{X}|}$
- > Forward Continuous Time Markov Chain (CTMC):

$$rac{\mathrm{d}m{p}_t}{\mathrm{d}t}=m{Q}_tm{p}_t,$$
 with  $Q_t(x,x)=-\sum_{y
eq x}Q_t(y,x)$  and  $Q_t(x,y)\geq 0\;(x
eq y)$ 

- **Task:** Sample from discrete data distribution  $p_0 \in \Delta^{|\mathcal{X}|}$
- Forward Continuous Time Markov Chain (CTMC):

$$rac{\mathrm{d}m{p}_t}{\mathrm{d}t} = m{Q}_tm{p}_t, ext{with } Q_t(x,x) = -\sum_{y 
eq x} Q_t(y,x) ext{ and } Q_t(x,y) \geq 0 \; (x 
eq y)$$

**Backward CTMC:** 

$$\frac{\mathrm{d} \overline{\boldsymbol{p}}_s}{\mathrm{d} s} = \overline{\boldsymbol{Q}}_s \overline{\boldsymbol{p}}_s, \text{ with } \overline{Q}_s(y,x) = \begin{cases} \frac{\overline{p}_s(y)}{\overline{p}_s(x)} \overline{Q}_s(x,y), & \forall x \neq y \in \mathbb{X}, \\ -\sum_{y' \neq x} \overline{Q}_s(y',x), & \forall x = y \in \mathbb{X}. \end{cases}$$

with 
$$oldsymbol{p}_0 = oldsymbol{p}_T pprox \mathsf{Unif}(\Delta)$$
 and  $oldsymbol{ar{p}}_T = p_0$ 

- **Task:** Sample from discrete data distribution  $p_0 \in \Delta^{|\mathcal{X}|}$
- > Forward Continuous Time Markov Chain (CTMC):

$$rac{\mathrm{d}m{p}_t}{\mathrm{d}t}=m{Q}_tm{p}_t,$$
 with  $Q_t(x,x)=-\sum_{y
eq x}Q_t(y,x)$  and  $Q_t(x,y)\geq 0\;(x
eq y)$ 

Backward CTMC:

$$\frac{\mathrm{d} \overline{\boldsymbol{p}}_s}{\mathrm{d} s} = \overline{\boldsymbol{Q}}_s \overline{\boldsymbol{p}}_s, \text{ with } \overline{Q}_s(y,x) = \begin{cases} \frac{\overline{p}_s(y)}{\overline{p}_s(x)} \overline{Q}_s(x,y), & \forall x \neq y \in \mathbb{X}, \\ -\sum_{y' \neq x} \overline{Q}_s(y',x), & \forall x = y \in \mathbb{X}. \end{cases}$$

with  ${m p}_0={m p}_Tpprox {\sf Unif}(\Delta)$  and  ${m ar p}_T=p_0$ 

**Score Function**:  $s_t(x) = (s_t(x,y))_{y \in \mathbb{X}} = \frac{p_t}{p_t(x)}$  by optimizing

$$\int_0^T \psi_t \mathbb{E}_{x_t \sim p_t} \left[ \sum_{y \neq x} \left( -\log \frac{\widehat{s}_t^{\theta}(x, y)}{s_t(x, y)} - 1 + \frac{\widehat{s}_t^{\theta}(x, y)}{s_t(x, y)} \right) s_t(x, y) Q_t(x, y) \right] dt$$

- **> Task:** Sample from discrete data distribution  $p_0 \in \Delta^{|\mathcal{X}|}$
- > Forward Continuous Time Markov Chain (CTMC):

$$rac{\mathrm{d}m{p}_t}{\mathrm{d}t}=m{Q}_tm{p}_t,$$
 with  $Q_t(x,x)=-\sum_tQ_t(y,x)$  and  $Q_t(x,y)\geq 0\ (x
eq y)$ 

Backward CTMC:

$$\frac{\mathrm{d} \overline{\boldsymbol{p}}_s}{\mathrm{d} s} = \overline{\boldsymbol{Q}}_s \overline{\boldsymbol{p}}_s, \text{ with } \overline{Q}_s(y,x) = \begin{cases} \frac{\overline{p}_s(y)}{\overline{p}_s(x)} \overline{Q}_s(x,y), & \forall x \neq y \in \mathbb{X}, \\ -\sum_{y' \neq x} \overline{Q}_s(y',x), & \forall x = y \in \mathbb{X}. \end{cases}$$

with  $oldsymbol{p}_0 = oldsymbol{p}_T pprox \mathsf{Unif}(\Delta)$  and  $oldsymbol{ar{p}}_T = p_0$ 

> Score Function:  $s_t(x) = (s_t(x,y))_{y \in \mathbb{X}} = \frac{p_t}{p_t(x)}$  by optimizing

$$\int_0^T \psi_t \mathbb{E}_{x_t \sim p_t} \left[ \sum_t \left( -\log \frac{\widehat{s}_t^{\theta}(x,y)}{s_t(x,y)} - 1 + \frac{\widehat{s}_t^{\theta}(x,y)}{s_t(x,y)} \right) s_t(x,y) Q_t(x,y) \right] dt$$

Implementations:  $\tau$ -leaping scheme ([Gil01, CBDB+22]), uniformization ([VD92, CY24])

## Section 2:

## A Stochastic Integral Framework for Discrete DMs

#### **Mathematical Preliminaries**

#### Poisson Random Measure with Evolving Intensity

 $(\Omega, \mathcal{F}, \mathcal{P})$ : probability space

 $(\mathbb{X}, \mathcal{B}, \nu)$ : measure space

 $\lambda_t(y)$ : a non-negative predictable process on  $\mathbb{R}^+ \times \mathbb{X} \times \Omega$  satisfying

$$\int_0^T \int_{\mathbb{X}} 1 \vee |y| \vee |y|^2 \lambda_t(y) \nu(\mathrm{d} y) \mathrm{d} t < \infty, \text{ a.s.}.$$

for any T>0, The random measure  $N[\lambda](\mathrm{d}t,\mathrm{d}y)$  on  $\mathbb{R}^+\times\mathbb{X}$  is called a *Poisson* random measure with evolving intensity  $\lambda_t(y)$  if

#### **Mathematical Preliminaries**

#### Poisson Random Measure with Evolving Intensity

 $(\Omega, \mathcal{F}, \mathcal{P})$ : probability space

 $(\mathbb{X}, \mathcal{B}, \nu)$ : measure space

 $\lambda_t(y)$ : a non-negative predictable process on  $\mathbb{R}^+ \times \mathbb{X} \times \Omega$  satisfying

$$\int_0^T \int_{\mathbb{X}} 1 \vee |y| \vee |y|^2 \lambda_t(y) \nu(\mathrm{d}y) \mathrm{d}t < \infty, \text{ a.s.}.$$

for any T>0, The random measure  $N[\lambda](\mathrm{d}t,\mathrm{d}y)$  on  $\mathbb{R}^+\times\mathbb{X}$  is called a *Poisson* random measure with evolving intensity  $\lambda_t(y)$  if

For any  $B \in \mathcal{B}$  and  $0 \le s < t$ ,  $N[\lambda]((s,t] \times B) \sim \mathcal{P}\left(\int_s^t \int_B \lambda_\tau(y) \nu(\mathrm{d}y) \mathrm{d}\tau\right)$ ; Interpretation: the number of jumps of magnitude y during the infinitesimal time interval  $(t,t+\mathrm{d}t]$  is Poisson distributed with mean  $\lambda_t(\nu)\gamma(\mathrm{d}\nu)\mathrm{d}t$ .

#### **Mathematical Preliminaries**

#### Poisson Random Measure with Evolving Intensity

 $(\Omega, \mathcal{F}, \mathcal{P})$ : probability space

 $(\mathbb{X}, \mathcal{B}, \nu)$ : measure space

 $\lambda_t(y)$ : a non-negative predictable process on  $\mathbb{R}^+ \times \mathbb{X} \times \Omega$  satisfying

$$\int_0^T \int_{\mathbb{X}} 1 \vee |y| \vee |y|^2 \lambda_t(y) \nu(\mathrm{d} y) \mathrm{d} t < \infty, \text{ a.s.}.$$

for any T>0, The random measure  $N[\lambda](\mathrm{d}t,\mathrm{d}y)$  on  $\mathbb{R}^+\times\mathbb{X}$  is called a *Poisson random measure with evolving intensity*  $\lambda_t(y)$  if

- In For any  $B \in \mathcal{B}$  and  $0 \le s < t$ ,  $N[\lambda]((s,t] \times B) \sim \mathcal{P}\left(\int_s^t \int_B \lambda_\tau(y) \nu(\mathrm{d}y) \mathrm{d}\tau\right)$ ; Interpretation: the number of jumps of magnitude y during the infinitesimal time interval  $(t,t+\mathrm{d}t]$  is Poisson distributed with mean  $\lambda_t(\nu)\gamma(\mathrm{d}\nu)\mathrm{d}t$ .

### Stochastic Integral Formulation: True Processes

Forward Process:

$$x_t = x_0 + \int_0^t \int_{\mathbb{X}} (y - x_{\tau^-}) N[\lambda] (\mathrm{d}\tau, \mathrm{d}y), \text{ with } \lambda_{\tau}(y) = \widetilde{Q}_{\tau}(y, x_{\tau^-}),$$

True Backward Process ( $\bar{s}_t$  denotes the true score):

$$\bar{x}_t = \bar{x}_0 + \int_0^t \int_{\mathbb{X}} (y - \bar{x}_{\tau^-}) N[\mu] (\mathrm{d}\tau, \mathrm{d}y), \text{ with } \mu_{\tau}(y) = \bar{s}_{\tau}(\bar{x}_{\tau^-}, y) \overline{Q}_{\tau}(\bar{x}_{\tau^-}, y),$$

### Stochastic Integral Formulation: $\tau$ -Leaping Scheme

Notation: time discretizations  $(s_i)_{i \in [0:N]}$  with  $s_0 = 0$  and  $s_N = T - \delta$ ,  $|\tau| = s_n$ for any  $\tau \in [s_n, s_{n+1})$  $\tau$ -leaping inference scheme:

$$\widehat{y}_{s_{n+1}} \leftarrow \widehat{y}_{s_n} + \sum_{u \in \mathbb{X}} (y - \widehat{y}_{s_n}) \mathcal{P}(\widehat{\mu}_{s_n}^{\theta}(y)(s_{n+1} - s_n))$$

with the evolving intensity  $\widehat{\mu}_{|\tau|}^{\theta}(y) = \overline{\widehat{s}}_{|\tau|}^{\theta}(\widehat{y}_{|\tau|^{-}}, y) \overline{Q}_{|\tau|}(\widehat{y}_{|\tau|^{-}}, y) = \widehat{\mu}_{s_{n}}^{\theta}(y)$ Approximate Backward Process (equivalent to  $\tau$ -leaping)

$$\widehat{y}_s = \widehat{y}_0 + \int_0^s \int_{\mathbb{X}} (y - \widehat{y}_{\lfloor \tau \rfloor^-}) N[\widehat{\mu}_{\lfloor \cdot \rfloor}^{\theta}](d\tau, dy)$$

#### Stochastic Integral Formulation: Uniformization Scheme

Notation: time discretization  $(s_b)_{b\in[0,N]}$  with  $s_0=0$  and  $s_N=T-\delta$ Uniformization inference scheme:

$$M \sim \mathcal{P}(\overline{\lambda}_{s_{b+1}}(s_{b+1} - s_b)), \, \sigma_m \sim \text{Unif}([0, 1]) \text{ for } m \in [M]$$

$$\widehat{y}_{s_b+\sigma_{(m)}} \leftarrow \begin{cases} y, & \text{w.p. } \widehat{\mu}^{\theta}_{s_b+\sigma_{(m)}}(y)/\overline{\lambda}_{s_{b+1}}, \text{ for } y \in \mathbb{X}, \\ \widehat{y}_{s_b}, & \text{w.p. } 1 - \sum_{y \in \mathbb{X}} \widehat{\mu}^{\theta}_{s_b+\sigma_{(m)}}(y)/\overline{\lambda}_{s_{b+1}}; \end{cases}$$

with the evolving intensity  $\widehat{\mu}_s^{\theta}(y) = \overline{\widehat{s}}_s^{\theta}(\widehat{y}_{s-}, y) \overline{Q}_s(\widehat{y}_{s-}, y)$ Approximate Backward Process (equivalent to uniformization)

$$y_s = y_0 + \int_0^s \int_{\mathbb{X}} \int_{\mathbb{R}} (y - y_{s^-}) \mathbf{1}_{0 \le \xi \le \int_{\mathbb{X}} \widehat{\mu}_s^{\theta}(y)\nu(\mathrm{d}y)} N[\widehat{\mu}^{\theta}](\mathrm{d}s, \mathrm{d}y, \mathrm{d}\xi)$$

▶ Regularity of rate matrix Q: (i)  $Q(x,y) \le C$  and  $\underline{D} \le -Q(x,x) \le \overline{D}$ ,  $\forall x,y \in \mathbb{X}$ , where  $C,\underline{D},\overline{D}>0$ ; (ii)  $\rho(Q)\ge \rho>0$  for the modified log-Sobolev constant  $\rho(Q)$  of the rate matrix Q.

- ▶ Regularity of rate matrix Q: (i)  $Q(x,y) \le C$  and  $\underline{D} \le -Q(x,x) \le \overline{D}$ ,  $\forall x,y \in \mathbb{X}$ , where  $C,\underline{D},\overline{D}>0$ ; (ii)  $\rho(Q)\ge \rho>0$  for the modified log-Sobolev constant  $\rho(Q)$  of the rate matrix Q.
- **>** Boundedness of true score  $s_t$  and learned score  $\widehat{s}_t$ :  $s_t(x,y) \lesssim 1 \lor t^{-1}$  and  $\widehat{s}_*^{\theta}(x,y) \in (0,M], \forall x,y \in \mathbb{X}$ .

- **Regularity of rate matrix Q:** (i) Q(x,y) < C and  $D < -Q(x,x) < \overline{D}$ ,  $\forall x, y \in \mathbb{X}$ , where  $C, \underline{D}, \overline{D} > 0$ ; (ii)  $\rho(Q) \geq \rho > 0$  for the modified log-Sobolev constant  $\rho(Q)$  of the rate matrix Q.
- **>** Boundedness of true score  $s_t$  and learned score  $\hat{s}_t$ :  $s_t(x,y) \leq 1 \vee t^{-1}$  and  $\hat{s}_{s}^{\theta}(x,y) \in (0,M], \forall x,y \in \mathbb{X}.$
- **Continuity of true score** For any t > 0 and  $y \in \mathbb{X}$  such that  $Q(x_{t-}, y) > 0$ , we have  $\left|\frac{\mu_{t+}(y)}{\mu_t(y)}\right| := \left|\frac{p_t(x_{t-})Q(x_t,y)}{p_t(x_t)Q(x_{t-},y)} - 1\right| \lesssim 1 \vee t^{-\gamma}$  for some exponent  $\gamma \in [0, 1].$

- **Regularity of rate matrix Q:** (i) Q(x,y) < C and  $D < -Q(x,x) < \overline{D}$ ,  $\forall x, y \in \mathbb{X}$ , where  $C, D, \overline{D} > 0$ ; (ii)  $\rho(Q) > \rho > 0$  for the modified log-Sobolev constant  $\rho(Q)$  of the rate matrix Q.
- **>** Boundedness of true score  $s_t$  and learned score  $\hat{s}_t$ :  $s_t(x,y) \leq 1 \vee t^{-1}$  and  $\hat{s}_{s}^{\theta}(x,y) \in (0,M], \forall x,y \in \mathbb{X}.$
- **Continuity of true score** For any t > 0 and  $y \in \mathbb{X}$  such that  $Q(x_{t-}, y) > 0$ , we have  $\left|\frac{\mu_{t+}(y)}{\mu_t(y)}\right|:=\left|\frac{p_t(x_{t-})Q(x_t,y)}{p_t(x_t)Q(x_{t-},y)}-1\right|\lesssim 1\vee t^{-\gamma}$  for some exponent  $\gamma \in [0, 1].$
- $\delta$ -accurate score estimation:

$$\sum_{n=0}^{N-1} (s_{n+1} - s_n) \mathbb{E} \left[ \int_{\mathbb{X}} K \left( \frac{\widetilde{s}_{s_n}^{\theta}(\overline{x}_{s_n^-}, y)}{\overline{s}_{s_n}(\overline{x}_{s_n^-}, y)} \right) \overline{s}_{s_n}(\overline{x}_{s_n^-}, y) \widetilde{Q}(\overline{x}_{s_n^-}, y) \nu(\mathrm{d}y) \right] \leq \delta.$$

> Regularity of data distribution:  $p_0$  has finite second moment and is normalized, i.e.,  $cov_{p_0}(x_0) = I_d$ 

- > Regularity of data distribution:  $p_0$  has finite second moment and is normalized, i.e.,  $cov_{p_0}(x_0) = I_d$
- **> Bounded learned score:** The learned score  $s_t^{\theta}$  has bounded  $C^1$  norm with Lipschitz const  $L_s$ .

- > Regularity of data distribution:  $p_0$  has finite second moment and is normalized, i.e.,  $cov_{p_0}(x_0) = I_d$
- **> Bounded learned score:** The learned score  $s_t^{\theta}$  has bounded  $C^1$  norm with Lipschitz const  $L_s$ .
- $\delta$ -accurate score estimation:

- **Regularity of data distribution:**  $p_0$  has finite second moment and is normalized, i.e.,  $cov_{p_0}(\boldsymbol{x}_0) = \boldsymbol{I}_d$
- Bounded learned score: The learned score  $s_t^{\theta}$  has bounded  $C^1$  norm with Lipschitz const  $L_{\mathfrak{s}}$ .
- $\triangleright$   $\delta$ -accurate score estimation:

SDE The learned score  $s_t^{\theta}$  is  $L^2([0, t_N])$   $\delta$ -accurate:

$$\sum_{j=0}^{N-1} (t_{j+1} - t_j) \mathbb{E}_{\overline{p}_{t_j}} \left[ \left\| \boldsymbol{s}_{t_j}^{\theta} \left( \boldsymbol{\tilde{x}}_{t_j} \right) - \nabla \log \boldsymbol{\tilde{p}}_{t_j} \left( \boldsymbol{\tilde{x}}_{t_j} \right) \right\|^2 \right] \leq \delta_2^2.$$

- > Regularity of data distribution:  $p_0$  has finite second moment and is normalized, i.e.,  $cov_{p_0}(x_0) = I_d$
- **> Bounded learned score:** The learned score  $s_t^{\theta}$  has bounded  $C^1$  norm with Lipschitz const  $L_s$ .
- $\delta$ -accurate score estimation:

SDE The learned score  $s_t^{\theta}$  is  $L^2([0, t_N])$   $\delta$ -accurate:

$$\sum_{i=0}^{N-1} (t_{j+1} - t_j) \mathbb{E}_{\tilde{p}_{t_j}} \left[ \left\| \boldsymbol{s}_{t_j}^{\theta} \left( \boldsymbol{\tilde{x}}_{t_j} \right) - \nabla \log \boldsymbol{\tilde{p}}_{t_j} \left( \boldsymbol{\tilde{x}}_{t_j} \right) \right\|^2 \right] \leq \delta_2^2.$$

PF-ODE The learned score  $s_t^{\theta}$  is  $L^{\infty}([0, T - \delta])$   $\delta$ -accurate:

$$\mathbb{E}_{\bar{p}_{t_j}}\left[\left\|\boldsymbol{s}_{t_j}^{\theta}\left(\boldsymbol{\bar{x}}_{t_j}\right) - \nabla\log\boldsymbol{\bar{p}}_{t_j}\left(\boldsymbol{\bar{x}}_{t_j}\right)\right\|^2\right] \leq \delta_{\infty}^2.$$

- **Regularity of data distribution:**  $p_0$  has finite second moment and is normalized, i.e.,  $cov_{p_0}(\boldsymbol{x}_0) = \boldsymbol{I}_d$
- **> Bounded learned score:** The learned score  $s_t^{\theta}$  has bounded  $C^1$  norm with Lipschitz const  $L_s$ .
- $\delta$ -accurate score estimation:

SDE The learned score  $s_t^{\theta}$  is  $L^2([0, t_N])$   $\delta$ -accurate:

$$\sum_{i=0}^{N-1} (t_{j+1} - t_j) \mathbb{E}_{\tilde{p}_{t_j}} \left[ \left\| \boldsymbol{s}_{t_j}^{\theta} \big( \boldsymbol{\bar{x}}_{t_j} \big) - \nabla \log \boldsymbol{\bar{p}}_{t_j} \big( \boldsymbol{\bar{x}}_{t_j} \big) \right\|^2 \right] \leq \delta_2^2.$$

PF-ODE The learned score  $s_t^{\theta}$  is  $L^{\infty}([0, T - \delta])$   $\delta$ -accurate:

$$\mathbb{E}_{\bar{p}_{t_j}}\left[\left\|\boldsymbol{s}_{t_j}^{\theta}\left(\boldsymbol{\bar{x}}_{t_j}\right) - \nabla \log \boldsymbol{\bar{p}}_{t_j}\left(\boldsymbol{\bar{x}}_{t_j}\right)\right\|^2\right] \leq \delta_{\infty}^2.$$

**Continuity of true score (PF-ODE):** The true score  $\nabla \log p_t$  has bounded  $C^1$  norm with Lipschitz const  $L_n$ .

## Section 3:

Main Results: Theoretical Guarantees of Inference Algorithms

### Convergence Guarantee for $\tau$ -leaping

#### Theorem (Theoretical Guarantees for $\tau$ -Leaping)

Take time discretization scheme  $(s_i)_{i\in[0,N]}$  satisfying  $s_0=0$ ,  $s_N=T-\delta$  and  $s_{k+1} - s_k \le \kappa \left(1 \lor (T - s_{k+1})^{1+\gamma-\eta}\right)$  for  $k \in [0:N-1]$ . Under aforementioned assumptions and the following choices of parameters

$$T = \mathcal{O}\left(\frac{\log(\epsilon^{-1}\log|\mathbb{X}|)}{\rho}\right), \ \kappa = \mathcal{O}\left(\frac{\epsilon\rho}{\overline{D}^2\log(\epsilon^{-1}\log|\mathbb{X}|)}\right), \ \delta = \begin{cases} 0, & \gamma < 1, \\ \Omega(e^{-\sqrt{T}}), & \gamma = 1, \end{cases}$$

we have the following error bound with probability  $1 - O(\epsilon)$ 

$$D_{\mathrm{KL}}(p_{\delta} \| \widehat{q}_{T-\delta}) \lesssim \exp(-\rho T) \log |\mathbb{X}| + \epsilon + \overline{D}^2 \kappa T \lesssim \epsilon,$$

and the total number of neural network evaluations is

$$N = \kappa^{-1} T = \mathcal{O}\left(\frac{\overline{D}^2 \rho^2 \log^2(\epsilon^{-1} \log |\mathbb{X}|)}{\epsilon}\right)$$

#### Convergence Guarantee for Uniformization

#### Theorem (Theoretical Guarantees for Uniformization)

Take block discretization scheme  $(s_b)_{b \in [0,N]}$  satisfying  $s_0 = 0, s_N = T - \delta$  and  $s_{k+1} - s_k \le \kappa (1 \vee (T - s_{k+1}))$  for  $k \in [0:N-1]$ . Under aforementioned assumptions and the following choices of parameters

$$T = \mathcal{O}\left(\frac{\log(\epsilon^{-1}\log|\mathbb{X}|)}{\rho}\right), \delta = \Omega(e^{-T})$$

we have the following error bound

$$D_{\mathrm{KL}}(p_{\delta}||q_{T-\delta}) \lesssim \exp(-\rho T) \log |\mathbb{X}| + \epsilon \lesssim \epsilon,$$

and the total number N of neural network evaluations satisfies

$$\mathbb{E}[N] = \mathcal{O}\left(rac{\overline{D}\log\left(\epsilon^{-1}\log|\mathbb{X}|
ight)}{
ho}
ight)$$

18/20

#### Major technique: Change of Measure for Poisson Random Measure

#### Theorem (Generalized Girsanov's Theorem for Poisson Random Measure)

Let  $N[\lambda](\mathrm{d}t,\mathrm{d}y)$  be a Poisson random measure with evolving intensity  $\lambda_t(y)$  in the probability space  $(\Omega, \mathcal{F}, \mathbb{P})$ , and

$$\log \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\mathbb{P}}\Big|_{\mathcal{F}_t} = \int_0^t \int_{\mathbb{X}} \log h_t(y) N[\lambda] (\mathrm{d}t \times \mathrm{d}y) - \int_0^t \int_{\mathbb{X}} (h_t(y) - 1) \lambda_t(y) \nu(\mathrm{d}y).$$

Then  $N[\lambda](\mathrm{d}t,\mathrm{d}y)$  under  $\mathbb Q$  is a Poisson random measure with evolving intensity  $\lambda_t(y)h_t(y)$ .



Thank you for your attention!

#### References I

- Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and Arnaud Doucet, A continuous time framework for discrete denoising models, Advances in Neural Information Processing Systems **35** (2022), 28266-28279.
- Hongrui Chen and Lexing Ying. Convergence analysis of discrete diffusion model: Exact implementation through uniformization, arXiv preprint arXiv:2402.08095 (2024).
- Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems, The Journal of chemical physics **115** (2001), no. 4. 1716-1733.
- Nico M Van Dijk, Uniformization for nonhomogeneous markov chains, Operations research letters 12 (1992), no. 5, 283-291.