Transformers are universal in-context learners

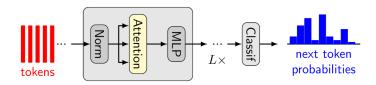
Takashi Furuya

Doshisha University

Joint work with

Maarten V. de Hoop (Rice University) Gabriel Peyré (CNRS, ENS, PSL)

Transformers



Transformer's architecture

The transformer [Vaswani et al 2017] was initially developed for NLP, and is a model to learn contexts (mapping sequences to sequences).

Q. How do transformers have an approximation ability?

Transformers

- ullet $X=(x_i)_{i=1}^n\in\mathbb{R}^{d_{\mathrm{tok}} imes n}$; a set of n tokens, $x_i\in\mathbb{R}^{d_{\mathrm{tok}}}$
- $MAtt_{\theta}: \mathbb{R}^{d_{tok} \times n} \to \mathbb{R}^{d_{tok} \times n}$, a multiple heads attention map with a skip-connection defined by

$$\mathrm{MAtt}_{\theta}(X) \coloneqq X + \sum_{h=1}^H W^h V^h X \mathsf{SoftMax}(X^\top (Q^h)^\top K^h X / \sqrt{k})$$

$$\theta \coloneqq (W^h, K^h, Q^h, V^h)_{h=1}^H \subset \mathbb{R}^{d_{\text{tok}} \times d_{\text{head}}} \times \mathbb{R}^{k \times d_{\text{tok}}} \times \mathbb{R}^{k \times d_{\text{tok}}} \times \mathbb{R}^{d_{\text{head}} \times d_{\text{tok}}}$$

SoftMax function defined by

$$\forall Z \in \mathbb{R}^{n \times n}, \quad \mathsf{SoftMax}(Z) \coloneqq \left(\frac{e^{Z_{i,j}}}{\sum_{\ell=1}^n e^{Z_{i,\ell}}}\right)_{i,j=1}^n \in \mathbb{R}_+^{n \times n},$$

• A transformer $T: \mathbb{R}^{d \times n} \to \mathbb{R}^{d' \times n}$ as a composition of L attention maps and MLPs:

$$T(X) = \mathrm{MLP}_{\xi_L} \circ \mathrm{MAtt}_{\theta_L} \circ \ldots \circ \mathrm{MLP}_{\xi_1} \circ \mathrm{MAtt}_{\theta_1}(X),$$

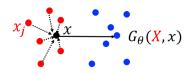
In-context mappings form

• The mapping $X \mapsto \mathrm{MAtt}_{\theta}(X)$ can be re-written as $G_{\theta}(X,\cdot)$ to each token,

$$MAtt_{\theta}(X) = (G_{\theta}(X, x_i))_{i=1}^n,$$

where $x \mapsto G_{\theta}(X,x)$ is "in-context" mapping (depending on context X)

$$G_{\theta}(X,x) := x + \sum_{h=1}^{H} W^{h} \sum_{j=1}^{n} \frac{\exp\left(\frac{1}{\sqrt{k}} \langle Q^{h}x, K^{h}x_{j} \rangle\right)}{\sum_{\ell=1}^{n} \exp\left(\frac{1}{\sqrt{k}} \langle Q^{h}x, K^{h}x_{\ell} \rangle\right)} V^{h}x_{j}.$$



In-context mappings

In-context mappings form

• The composition of two in-context mappings denoted by \diamond :

$$(G_2 \diamond G_1)(X,x) \coloneqq G_2(Y,G_1(X,x))$$
 where $Y \coloneqq (G_1(X,x_i))_{i=1}^n$,

• The transformer's definition translated into

$$T(X) = (F_{\xi_L} \diamond G_{\theta_L} \diamond \dots \diamond F_{\xi_1} \diamond G_{\theta_1}(X, x_i))_{i=1}^n.$$

Note that MLPs F_{ξ_ℓ} are "context-free" maps (i.e., $F_\xi(X,x)=F_\xi(x)$), while attentions G_{θ_ℓ} are "in-context" maps (i.e., $G_{\theta_\ell}(X,\cdot)$ depend on the context X).

Here, we focus on the approximation ability of the in-context map

$$\mathbb{R}^{d \times n} \times \mathbb{R}^d \ni (X, x) \mapsto F_{\xi_L} \diamond G_{\theta_L} \diamond \dots \diamond F_{\xi_1} \diamond G_{\theta_1}(X, x) \in \mathbb{R}^{d'}$$

Main result

Theorem 1

Let $\Omega \subset \mathbb{R}^d$ be a compact set and $\Lambda^*: \Omega^n \times \Omega \to \mathbb{R}^{d'}$ be continuous. Then for all $\varepsilon > 0$, there exist L and parameters $(\theta_\ell, \xi_\ell)_{\ell=1}^L$, such that

$$\forall (X,x) \in \Omega^n \times \Omega, \quad |F_{\xi_L} \diamond G_{\theta_L} \diamond \ldots \diamond F_{\xi_1} \diamond G_{\theta_1}(X,x) - \Lambda^{\star}(X,x)| \leq \varepsilon,$$

with
$$d_{\text{tok}}(\theta_{\ell}) \leq d + 3d'$$
, $d_{\text{head}}(\theta_{\ell}) = k(\theta_{\ell}) = 1$, $H(\theta_{\ell}) \leq d'$.

Previous work: [Chulhee et al 2019], the transformers operate over an embedding dimension which grows with the number n of tokens.

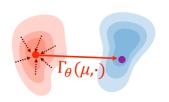
Novelty : The embedding dimensions $d_{\rm tok}, d_{\rm head}$ do not depend on ε and n.

Proof of main result

We extend to the measure-theoretic in-context maps defined as, $\forall (\mu,x) \in \mathcal{P}(\mathbb{R}^{d_{\mathrm{tok}}}) \times \mathbb{R}^{d_{\mathrm{tok}}}$,

$$\Gamma_{\theta}(\mu, x) := x + \sum_{h=1}^{H} W^{h} \int \frac{\exp\left(\frac{1}{\sqrt{k}} \langle Q^{h} x, K^{h} y \rangle\right)}{\int \exp\left(\frac{1}{\sqrt{k}} \langle Q^{h} x, K^{h} z \rangle\right) d\mu(z)} V^{h} y d\mu(y).$$

Arbitrary number of token can be inputted.



Measure-theoretic in-context maps

Proof of main result

ullet When $\mu=rac{1}{n}\sum_{i=1}^n\delta_{x_i}$, coincides with the discrete case, i.e.,

$$\forall X = (x_i)_{i=1}^n, \quad G_{\theta}(X, x) = \Gamma_{\theta} \left(\frac{1}{n} \sum_{i=1}^n \delta_{x_i}, x \right).$$

• The definition of composition generalized as

$$(\Gamma_2 \diamond \Gamma_1)(\mu,x) \coloneqq \Gamma_2(\nu,\Gamma_1(\mu,x)), \quad \text{where} \quad \nu \coloneqq \Gamma_1(\mu,\cdot)_{\sharp}\mu,$$

ullet The measure-theoretic transformer $\mathcal{T}:\mathcal{P}(\mathbb{R}^d) o\mathcal{P}(\mathbb{R}^{d'})$ is defined by

$$\mathcal{T}(\mu) := (F_{\xi_L} \diamond \Gamma_{\theta_L} \diamond \ldots \diamond F_{\xi_1} \diamond \Gamma_{\theta_1}(\mu, \cdot))_{\sharp} \mu.$$

Proof of main result

Show that

$$(\mu, x) \mapsto F_{\xi_L} \diamond \Gamma_{\theta_L} \diamond \dots \diamond F_{\xi_1} \diamond \Gamma_{\theta_1}(\mu, x)$$

is universal in $\mathcal{C}(\mathcal{P}(\Omega) \times \Omega)$.

- Apply the Stone-Weierstrass theorem.
- We define a generalized Laplace-like transform

$$L(\mu)(a,c) := \int \frac{e^{c\langle a,y\rangle}\langle a,y\rangle}{\int e^{c\langle a,z\rangle} \,\mathrm{d}\mu(z)} \,\mathrm{d}\mu(y).$$

The following lemma is useful for showing the separation of points.

Lemma 2

The map $\mu \mapsto L(\mu)$ is injective.

