STAR: Stability-Inducing Weight Perturbation for Continual Learning

Masih Eskandar, Tooba Imtiaz, Davin Hill, Zifeng Wang, Jennifer Dy

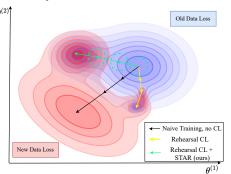
Northeastern University

Motivation

- Humans learn sequentially without forgetting.
- Neural networks suffer from catastrophic forgetting.
- Rehearsal-based methods help but are limited by buffer size.
- Goal: Improve stability of model predictions over time.

Key Idea: STAR

- Introduce **STAR**: Stability-Inducing Parameter-space Regularization.
- Promotes consistency of model outputs under worst-case local parameter perturbations.
- Plug-and-play with any rehearsal-based continual learning method.



How STAR Works

- Identify correctly classified buffered samples.
- ② Apply perturbation δ that maximizes KL divergence of outputs.
- **1** Use this worst-case δ to regularize training:

$$\mathcal{L}_{\mathsf{STAR}} = \max_{\|\delta\| \leq d} \sum_{(x,y) \in M^*} \mathsf{KL}(q_{ heta}(x) \parallel q_{ heta + \delta}(x))$$

Final objective:

$$\mathcal{L} = \mathcal{L}_{\mathsf{CL}} + \lambda \mathcal{L}_{\mathsf{STAR}}$$

ICLR 2025

Results Summary

- STAR improves accuracy by up to 15% across methods and datasets.
- Effective across buffer sizes and baselines (ER, DER++, ER-ACE, X-DER).
- Especially beneficial when buffer is small.

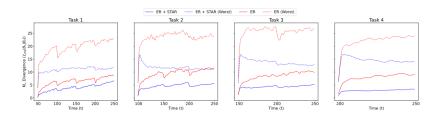
Table 1: Comparison of adding STAR to baseline rehearsal-based CL methods in terms of average accuracy.

Method	Split-Cifar10			Split-Cifar100			Split-miniImageNet		
Sequential	19.67			9.29			4.51		
Joint	92.38			73.29			53.55		
Buffer Size	100	200	500	200	500	2000	1000	2000	5000
ER	36.39	44.79	57.74	14.35	19.66	36.76	8.37	16.49	24.17
+ STAR (ours)	51.5	59.3	70.70	19.64	29.64	44.65	11.83	16.64	25.83
ER-ACE	52.95	61.25	71.16	29.22	38.01	49.95	17.95	22.60	27.92
+ STAR (ours)	60.69	67.58	75.44	30.38	40.20	51.67	21.06	24.9	31.01
DER++	57.65	64.88	72.70	25.11	37.13	52.08	18.02	23.44	30.43
+ STAR (ours)	61.76	68.60	76.52	27.64	39.77	53.24	22.4	28.19	33.36
X-DER (RPC)	52.75	58.48	64.77	37.23	48.53 47.56	57.00	23.19	26.38	29.91
+ STAR (ours)	58.85	65.94	69.19	38.15		57.55	24.6	27.95	32.6

5/7

Ablations and Insights

- Gradient-based perturbations outperform random ones.
- Using only buffer samples in the STAR loss is best.
- Empirically validate that STAR reduces local-worst case change in distribution



Conclusion

- STAR is a simple yet powerful regularization strategy for CL.
- Enhances rehearsal-based methods without needing task boundaries.
- Open-sourced: github.com/Gnomy17/STAR_CL