Safety Alignment Should Be Made More Than Just A Few Tokens Deep [ICLR 2025 Outstanding Paper] Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek Mittal, Peter Henderson (xiangyuai,ashwinee,klyu)@princeton.edu. (xmaa.subhrajitrov,beirami)@google.com. (pmittal.peter.henderson)@princeton.edu (Authors shown in bold are here at ICLR.) ## The Shallow Safety Alignment Issue Current alignment methods primarily adapt the base model's generative distribution only over the very first few output tokens to induce a basic refusal response. 1. A "Safety Shortcut" Exists: Even unaligned models only need a refusal prefix to appear "safe". | Refusal Prefi | () | Prefix "I cannot" fulfill" "I apologize" but I car | | "I apologize,
but I cannot" | "I am
unable" | | | |---|---------|--|----------------|--------------------------------|------------------|---------------|---------------| | ↓ Harmfulness Rate (%) on HEx-PHI Benchmark with A Refusal Prefix Prefilled During Decoding | | | | | | coding | | | Llama-2-7B | Aligned | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | | | Base | 68.6 ± 0.8 | 16.4 ± 1.4 | 5.4 ± 1.3 | 14.4 ± 0.6 | 2.1 ± 0.2 | 8.1 ± 0.4 | | Gemma-7B | Aligned | 2.1 ± 0.2 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | | Gemilia-/B | Base | 85.4 ± 0.6 | 8.7 ± 1.2 | 2.7 ± 0.5 | 14.1 ± 0.4 | 1.0 ± 0.8 | 3.9 ± 0.4 | ### 2. Current Safety-aligned Models Exploit This Shortcut: Aligned and base models diverge mostly in the first few tokens over harmful answers. Token-wise KL Divergence at each token position k: $D_{\mathrm{KL}}(\pi_{\mathrm{aligned}}(\cdot|\boldsymbol{x},\boldsymbol{y}_{< k})||\pi_{\mathrm{base}}(\cdot|\boldsymbol{x},\boldsymbol{y}_{< k}))$ #### 3. Vulnerabilities! - Prefilling Attacks (Andriushchenko et al., 2024; Haize Labs, 2024; Vega et al., 2023) - o Prefill a non-refusal prefix - Optimization-based Inference-Time Jailbreaks (Zou et al., 2023b; Andriushchenko et al., 2024) - Methods like GCG used shallow surrogate objectives - Fine-tuning attacks (Qi et al., 2023; Zhan et al., 2023) - o Actually perturb the first few tokens the most 22.4%; 3) After 4 gradient steps = 76.4%; 4) After 6 gradient steps = 87.9%. ## What If the Safety Alignment Were Deeper? ## What If the Initial Tokens Were Protected Against Fine-Tuning? Imposing Strong Constraints on the First 5 Tokens Mitigates the Fine-Tuning Attack Table 4: Fine-tuning with The Constrained Objective in Eqn 3, with larger constraints $\beta_1=0.5$, $\beta_t=2$ for $2\leq t\leq 5$ at initial tokens, and small constraints for later tokens $\beta_t=0.1$ for t>5. | $Models \rightarrow$ | | | Llama-2-7B-C | hat | | Gemma-1.1-7B-IT | | | | |-----------------------|-----------------------------------|----------------|-----------------|---------------------------|---------|------------------------|---------------------------|--|--| | Datasets ↓ | mean ± std (%)
(over 3 rounds) | Initial | Standard
SFT | Constrained
SFT (ours) | Initia | d Standard
SFT | Constrained
SFT (ours) | | | | | | | nst Fine-tunin | | | | | | | | Harmful Examples ASR | | 1.5 ± 0.2 | 88.9 ± 1.2 | 4.6 ± 0.5 | 1.8 ± t | 0.3 81.6 ± 2.9 | 1.9 ± 0.2 | | | | Identity Shifting ASR | | 0 ± 0 | 79.5 ± 2.3 | 8.1 ± 0.1 | 0 ± t |) 83.6 ± 2.5 | 9.1 ± 1.7 | | | | Backdoor | ASR (w/o trigger) | 1.5 ± 0.2 | 7.6 ± 1.1 | 1.9 ± 0.2 | 1.8 ± t | $0.3 2.0 \pm 0.2$ | 1.5 ± 0.1 | | | | Poisoning | ASR (w/ trigger) | 1.7 ± 0.1 | 90.9 ± 1.4 | 10.9 ± 2.8 | 1.8 ± (| $0.3 82.3 \pm 1.1$ | 1.9 ± 0.8 | | | | | | Fine-tuning w | ith Normal De | wnstream Datas | ets | | | | | | Samsum | ASR | 1.5 ± 0.2 | 23.4 ± 2.5 | 3.2 ± 0.8 | 1.8 ± t | $0.3 \mid 2.0 \pm 0.2$ | 2.4 ± 0.3 | | | | | Utility | 25.5 ± 0.3 | 51.7 ± 0.5 | 50.1 ± 0.2 | 36.0 ± | | 51.9 ± 0.5 | | | | SQL Create Context | ASR | 1.5 ± 0.2 | 15.4 ± 1.4 | 3.2 ± 0.8 | 1.8 ± t | 0.3 2.8 ± 0.2 | 2.4 ± 0.1 | | | | | Utility | 14.9 ± 0.4 | 99.1 ± 0.2 | 98.5 ± 0.1 | 88.0 ± | | 98.6 ± 0.3 | | | | GSM8k | ASR | 1.5 ± 0.2 | 3.3 ± 0.4 | 2.0 ± 0.5 | 1.8 ± t | | 1.7 ± 0.4 | | | | | Utility | 25.5 ± 0.2 | 41.7 ± 0.4 | 37.4 ± 0.3 | 28.5 ± | $1.2 63.3 \pm 0.5$ | 63.6 ± 0.4 | | |