

WC-Gym: A Fixed-Wing UAV Reinforcement Learning Environment for Multi-Goal Long-Horizon Problems

Xudong Gong^{1,2} Dawei Feng^{1,2} Kele Xu^{1,2} Weijia Wang³ Zhangjun Sun³ Xing Zhou⁴ Si Zheng⁵ Bo Ding^{1,2} Huaimin Wang^{1,2}

¹College of Computer Science and Technology, National University of Defense Technology, Changsha, Hunan, China

²State Key Laboratory of Complex & Critical Software Environment, Changsha, Hunan, China

³Flight Automatic Control Research Institute, AVIC, Xian, Shaanxi, China

⁴College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan, China

⁵Qiyuan Lab, Beijing, China

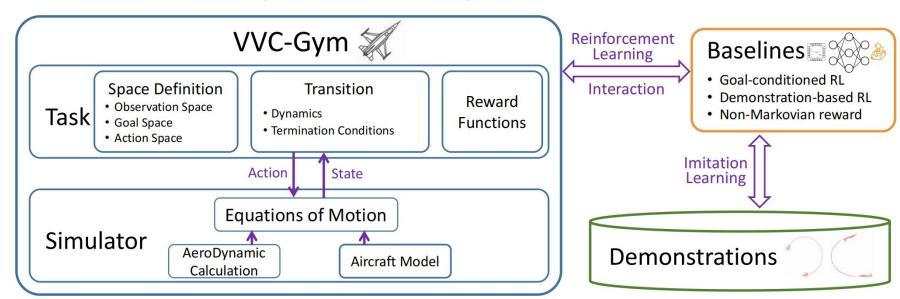
- 1. Motivation
- 2. VVC-Gym
- 3. Experiments
- 4. Discussion

Motivation

Multi-Goal Problems

A UAV must be capable of achieving not only the left-side goal but also the right-side goal

Long-Horizon Problems


When completing an ascending turn, it is necessary to perform a horizontal turn first, then accelerate in a straight line, and finally climb in altitude (Long interaction sequence)

Challenge

- The spatial complexity of exploration: introduces the additional goal space that requires to explore
- > The **temporal complexity** of exploration: the learning signal decreases exponentially with the horizon

Motivation

- Existing work predominantly focuses on the design of algorithms, neglecting the importance of environment design and the potential benefits that demonstrations can provide during training.
- > To facilitate study on multi-goal long-horizon problems, we:
 - Provide the GCRL community with the first RL environment on realistic fixed-wing UAV's velocity vector control (VVC) task, VVC-Gym.
 - Conduct ablation studies on the environment design of VVC-Gym.
 - Equip VVC-Gym with multi-quality **demonstration** datasets.
 - Provide baselines on VVC-Gym and corresponding demonstrations

- 1. Motivation
- 2. VVC-Gym
- 3. Experiments
- 4. Discussion

VVC-Gym

RL Environment

- > Problem Formulation
 - Manipulating the UAV's velocity vector to match a desired velocity vector.
- > Transition
 - ◆ 7 termination conditions are employed to avoid collecting ineffective samples
 - Reach Target Termination (RT)
 - **T**imeout termination (T)
 - Crash Termination (C)
 - Continuously Move Away Termination (CMA)

- Continuously Roll Termination (CR)
- Extreme State Termination (ES)
- Negative Overload and Big Roll Angle Termination (NOBR)
- ◆ a general distance-based goal-conditioned reward is designed to facilitate effective learning

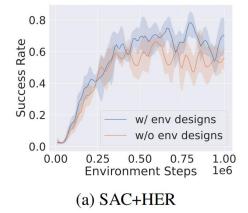
$$r_{g,t} = \begin{cases} 0, & \text{if triggers RT} \\ r_{penalty}, & \text{if triggers any of CMA, CR, C, ES, or NOBR} \\ -(\frac{\|\zeta(s_t) - g\|}{\sigma})^b, & \text{else} \end{cases}$$

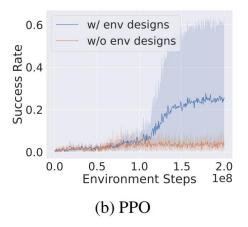
VVC-Gym

Demonstrations

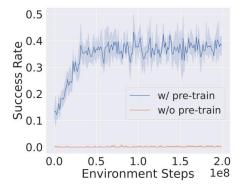
- Demonstration Generating Method
 - 1. Generating seed demonstrations with a PID controller
 - 2. Augmenting demonstrations based on symmetry
 - 3. Generating more and high-quality demonstrations through the IRPO¹ algorithm
- Demonstration quantity and quality

Demonstration	Number of trajectories	Goal space coverage (%)	Average length of trajectories	Number of transitions	Accuracy		
					$error_v$	$error_{\mu}$	$error_{\chi}$
\mathcal{D}_E^0	10184	20.08	282.01±149.98	2872051	6.56±3.25	0.36±0.35	0.53±0.45
$rac{\mathcal{D}_{E}^{0}}{\mathcal{D}_{E}^{0}}$	10264	20.24	281.83±149.48	2892731	6.56±3.25	0.36 ± 0.36	0.53 ± 0.45
	24924	49.15	124.64±53.07	3106516	4.12±3.45	0.59 ± 0.32	0.57 ± 0.41
$rac{\mathcal{D}_E^1}{\mathcal{D}_E^1}$	27021	53.28	119.64±47.55	3232896	4.47±3.49	0.58 ± 0.32	0.60 ± 0.44
	33114	65.29	117.65±46.24	3895791	4.83 ± 3.45	0.57 ± 0.33	0.66 ± 0.54
$rac{\mathcal{D}_E^2}{\mathcal{D}_E^2}$	34952	68.92	115.76±45.65	4045887	5.16±3.47	0.56 ± 0.33	0.68 ± 0.60
\mathcal{D}_3	38654	76.22	116.59±46.81	4506827	5.24 ± 3.41	0.60 ± 0.34	0.71 ± 0.69
$\overline{\mathcal{D}_E^3}$	39835	78.55	116.56±47.62	4643048	5.29±3.38	0.60 ± 0.35	0.74±0.75


^{1.} Xudong G, Dawei F, Xu K, et al. Iterative regularized policy optimization with imperfect demonstrations[C]//Forty-first International Conference on Machine Learning. 2024.


- 1. Motivation
- 2. VVC-Gym
- 3. Experiments
- 4. Discussion

Experiments


Main Results

- > Evaluating the effectiveness of termination conditions and reward function
 - The termination conditions and the dense reward effectively facilitate more efficient training for GCRL algorithms

- > Evaluating the benefits of demonstrations for GCRL training
 - · Demonstrations facilities more efficient GCRL training

Experiments

Baselines

(a) Baselines on GCRL methods

RL type	Algorithm	Success rate		
Off-policy	SAC	1.08±0.48		
On-poncy	HER	8.32 ± 1.86		
On-policy	PPO	0.04 ± 0.03		
On-poncy	GCBC + PPO	38.31±1.62		

Both RL and GCRL algorithms perform poorly on VVC-Gym, suggesting VVC-Gym poses a challenging multi-goal longhorizon task (b) Baselines on Curriculum methods

Success rate		
38.31±1.62		
49.03±1.54		
49.36±1.91		
48.62±2.35		

self-curriculum methods can enhance learning effectiveness, indicating that VVC-Gym is suitable for studying selfcurriculum in GCRL (c) Baselines on demonstration-based methods GCRC GCRC L RRO

od _{Bemos}	GCBC	GCBC + PPO
$\overline{\mathcal{D}_E^0}$	17.08±0.57	38.31±1.62
$\overline{\mathcal{D}_E^1}$	36.54±1.97	53.83±0.80
$\overline{\mathcal{D}_E^2}$	41.79±0.44	68.47±1.20
$\overline{\mathcal{D}_E^3}$	42.77±1.35	71.68±2.86

both GCBC and GCBC+PPO exhibit improved policy performance as the quantity and quality of the demonstrations increase, suggesting that VVC-Gym and the demonstrations are well-suited for studying demonstration-based RL

- 1. Motivation
- 2. VVC-Gym
- 3. Experiments
- 4. Discussion

Discussion

Our Contributions


- > We propose **VVC-Gym**, a fixed-wing UAV environment suited for researching multi-goal long-horizon problems.
- > We equip VVC-Gym with multi-quality demonstration datasets.
- ➤ We provide **baselines** for GCRL, demonstration-based RL algorithms on VVC-Gym and its demonstrations.

Future Work

- Construct tasks with longer control sequences, including BFMs such as Slow Roll and Knife Edge
- Establish baselines for automatic sub-goal generation methods
- Explore methods for collecting low-cost demonstrations for velocity vector control tasks from human play data

Thanks for watching!

- > Code is available at:
 - https://github.com/GongXudong/fly-craft
 - https://github.com/GongXudong/fly-craft-examples

Fly-Craft-Examples