

Score-based free-form architectures for high-dimensional Fokker-Planck equations

Feng Liu^{1,3,4,5} Faguo Wu^{1,4,5,6,*} Xiao Zhang^{2,4,5,6,7,*}

¹ School of Artificial Intelligence, Beihang University

² School of Mathematical Sciences, Beihang University

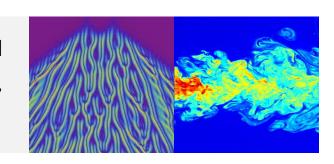
³ National Superior College for Engineers, Beihang University

⁴ Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education

⁵ Zhongguancun Laboratory

⁶ Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing

⁷ Hangzhou International Innovation Institute, Beihang University


Background

Stochastic Dynamical Systems

The Fokker–Planck equation governs the time-varying probability density of dynamical systems driven by stochastic processes, with applications in statistical physics, finance, traffic flow prediction, epidemic spread simulation and climate modeling.

Stock Market

Governs stochastic processes in stock price movements, depicting risk modeling and option pricing.

Traffic Flow Prediction

Describes how cars or pedestrians move under uncertainty, helping optimize urban mobility.

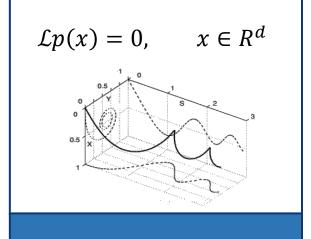
Epidemic Spread

Simulates how diseases spread in populations with random interactions, aiding pandemic modeling.

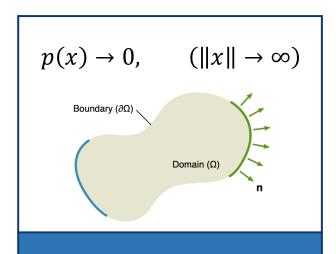
Climate Modeling

Helps study stochastic climate variability, often represented in weather and ocean current simulations.

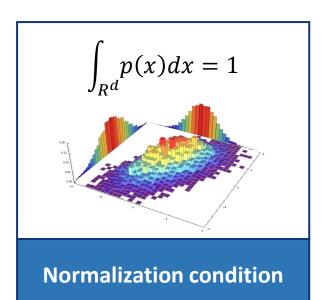
Preliminaries



Fokker-Planck Equations and Challenges


- Stochastic differential equation: $dx = \mu(x, t)dt + \sigma(x, t)dW_t$
- Steady-state FP equation:

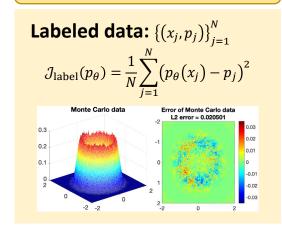
$$\frac{\partial p(\boldsymbol{x})}{\partial t} = \mathcal{L}p := -\sum_{i=1}^{d} \frac{\partial (p\mu_i)}{\partial x_i} + \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{\partial^2 (D_{i,j}p)}{\partial x_i \partial x_j} = -\nabla \cdot (p\boldsymbol{\mu}) + \nabla \cdot [\nabla \cdot (\boldsymbol{D}p)]$$


i.e.

High-dimensional variables

Unbounded spatial domains

Related Work



Physics-informed Neural Networks

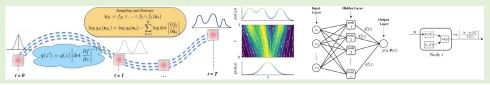
- Plain PDE loss: $\mathcal{J}_{\text{plain}}(p_{\theta}) = \mathbb{E}_{x \sim U(\Omega)} \left[\left| -\nabla \cdot \left(p_{\theta}(x) \mu(x) \right) + \nabla \cdot \left(\nabla \cdot \left(D(x) p_{\theta}(x) \right) \right) \right|^2 \right]$
- Both p and Zp satisfy the SFP equation: $\mathcal{L}p = 0$
- Directly minimizing $\mathcal{J}_{\text{plain}}$ makes $p_{\theta} \approx Zp$ converge to a trivial solution.

Deep learning methods

Data Driven

Soft Constraints.

$$\mathcal{J}_{\text{norm}}(p_{\theta}) = \left(\frac{\nu(\Omega)}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} p_{\theta}(x) - 1\right)^{2}$$


$$\frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} p_{\theta}(x) - 1$$

Normalization Condition

Hard Constraints.

- Normalizing Flows: $p_X(x) = p_Z(z)|\det \nabla_x f(x)|$
- Shape-morphing Gaussians:

$$p(x; \theta(t)) = \sum_{i=1}^{r} A_i^2(t) \exp\left[-\frac{|x - c_i(t)|^2}{L_i^2(t)}\right]$$

Related Work

Limitations

- Data-driven: few labels, low accuracy, computational burden.
- Normalization: trade-offs between representation capabilities and normalization constraints.

Model and Constraints

- Soft constraints often violate the physical laws.
- Hard constraints may sacrifice the representation capacity.

Optimize dynamics

- \mathcal{J}_{plain} tends to push the solution to zero.
- \mathcal{J}_{norm} prevents the zero solution on domain.
- These conflicting forces result in a tortuous optimization process that often requires delicate manual balancing.

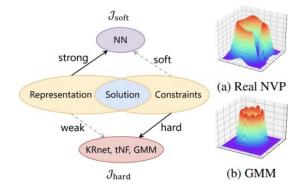


Table 1: Deep learning methods for SFP equations.

Methods	Loss function	Model	Arbitrary NN?	Whether strictly satisfy NC?
Data-Driven	$\mathcal{J}_{ ext{plain}} + \lambda \mathcal{J}_{ ext{label}}$	$p_{ heta}(oldsymbol{x}) = p_{ extsf{NN}}(oldsymbol{x}; heta)$	✓	×
Normalization Condition	$\mathcal{J}_{ extsf{plain}} + \lambda \mathcal{J}_{ extsf{norm}}$	$p_{ heta}(oldsymbol{x}) = p_{ extsf{NN}}(oldsymbol{x}; heta)$	✓	×
	$\mathcal{J}_{plain}(p_{ heta})$	$p_{\theta}(\boldsymbol{x}) = p_{\text{KRnet}}(\boldsymbol{x}; \theta), p_{\text{GMM}}(\boldsymbol{x}; \theta), p_{\text{TNN}}(\boldsymbol{x}; \theta) \cdots$	Х	✓
	$\mathcal{J}_{ ext{score}}(\widetilde{p}_{ heta})$	$\widetilde{p}_{ heta}(m{x}) = \widetilde{p}_{ ext{NN}}(m{x}; heta), p_{ heta}(m{x}) = rac{\widetilde{p}_{ heta}(m{x})}{\int \widetilde{p}_{ heta}(m{y}) dm{y}}$	1	✓

Our Method

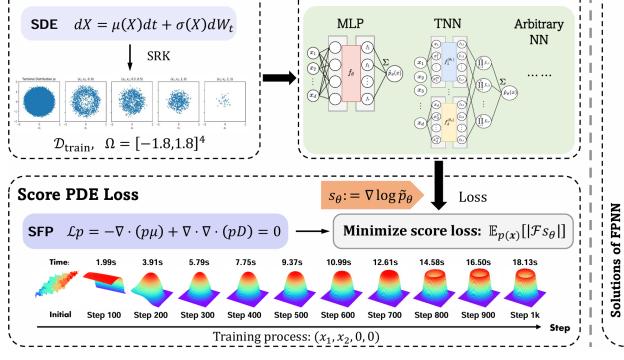
Fokker-Planck Neural Network

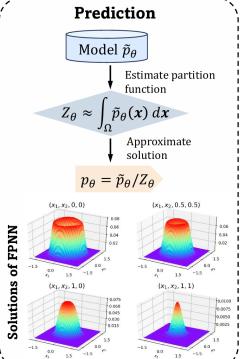
- We propose a Fokker-Planck neural network (FPNN) framework to efficiently solve high-dimensional
 SFP equations, decoupling the score learning and the density normalization into two stages.
- Stein Score $\nabla_{\mathbf{x}} \log p$: $p_{\theta}(\mathbf{x}) = \frac{\widetilde{p}_{\theta}(\mathbf{x})}{Z_{\theta}}$, $Z_{\theta} = \int \widetilde{p}_{\theta}(\mathbf{x}) d\mathbf{x}$ $\log p_{\theta}(\mathbf{x}) = \log \widetilde{p}_{\theta}(\mathbf{x}) \log Z_{\theta}$ $\nabla \log p_{\theta}(\mathbf{x}) = \nabla \log \widetilde{p}_{\theta}(\mathbf{x})$
- **Key idea:** Since p_{θ} and \tilde{p}_{θ} share the same score, we can derive a score PDE loss of SFP equations to bypass the normalization condition.
- Derivation of Score PDE Loss:

$$\begin{split} \mathcal{L}p(x) &= -\nabla \cdot (p\mu) + \nabla \cdot \nabla \cdot (Dp) \\ &= -\nabla \cdot (p\mu - (\nabla \cdot D)p - D\nabla p) \\ &= -\nabla \cdot \left(p(\mu - \nabla \cdot D - D\nabla \log p) \right) \\ &= -\nabla \cdot (p\tilde{\mu}) \end{split} \\ \tilde{\mu} &\coloneqq \mu - \nabla \cdot D - D\nabla \log p \end{split} \\ \tilde{\mu} &\coloneqq \mu - \nabla \cdot D - D\nabla \log p \end{split} \\ \tilde{\mu} &\coloneqq \mu - \nabla \cdot D - D\nabla \log p \end{split} \\ \tilde{\mu} &\coloneqq \mu - \nabla \cdot D - D\nabla \log p \end{split} \\ \tilde{\mu} &\coloneqq \mu - \nabla \cdot D - D\nabla \log p \end{split} \\ \tilde{\mu} &\coloneqq \mu - \nabla \cdot D - D\nabla \log p \end{split} \\ \tilde{\mu} &\coloneqq \mu - \nabla \cdot D - D\nabla \log p \end{split} \\ \tilde{\mu} &\coloneqq \mu - \nabla \cdot D - D\nabla \log p \end{split}$$

Our Method

Data





Framework

• Score PDE Loss: $\mathbb{E}_{p(m{x})}[|\mathcal{F}m{s}_{ heta}(m{x})|] := \mathbb{E}_{m{x}\sim p(m{x})}[|m{s}_{ heta}(m{x})\cdot\widetilde{m{\mu}}(m{x}) +
abla\cdot\widetilde{m{\mu}}(m{x})|]$ $\widetilde{m{\mu}}(m{x}) := m{\mu}(m{x}) -
abla\cdotm{D}(m{x}) - m{D}(m{x})m{s}_{ heta}(m{x})$

Model

Tensor Neural Networks (TNN)

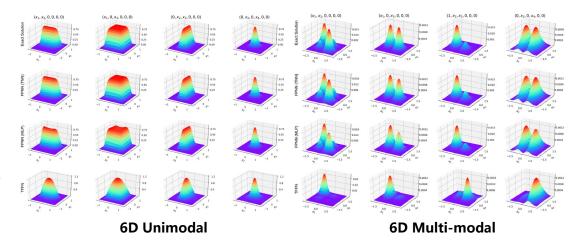
$$\widetilde{p}_{\theta}(\boldsymbol{x}) = \sum_{j=1}^{r} \prod_{i=1}^{d} f_{i,j}(x_i; \theta_i)$$

$$Z_{\theta} \approx \sum_{j=1}^{r} \prod_{i=1}^{d} \left(\sum_{n_i=1}^{N_i} w_i^{(n_i)} f_{i,j} \left(x_i^{(n_i)}; \theta_i \right) \right)$$

Multi-Layer Perceptron (MLP)

$$egin{aligned} \widetilde{p}_{ heta}(oldsymbol{x}) &= \sum_{j=1}^r f_j(oldsymbol{x}; heta) \ Z_{ heta} &pprox \int_{\Omega} \widetilde{p}_{ heta}(oldsymbol{x}) doldsymbol{x} pprox rac{|\Omega|}{|\mathcal{D}_{ ext{norm}}|} \sum_{oldsymbol{x}_i \in \mathcal{D}_{ ext{norm}}} \widetilde{p}_{ heta}(oldsymbol{x}_i) \end{aligned}$$

Experiments


Accuracy

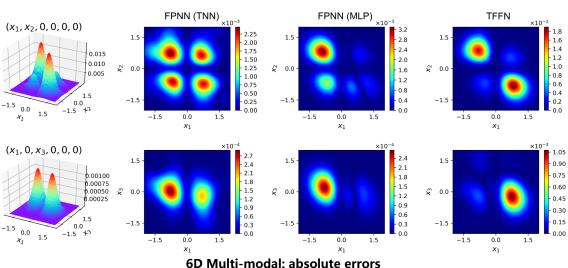
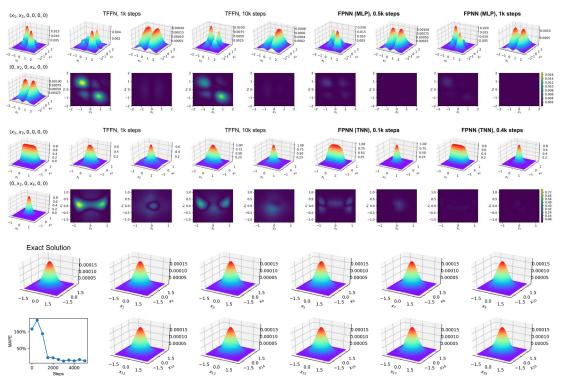

- TFFN can not learn the solution correctly with 50,688 parameters and 20k steps in 6D Unimodal problem.
- FPNN gets average relative errors of 11.36%, 13.87% and 12.72% for 4D Ring, 6D Unimodal and 6D Multimodal problems respectively, requiring only 256, 980, and 980 parameters.

Table 2: Experimental results of TFFN and FPNN on 4-6 dimensional SFP equations.

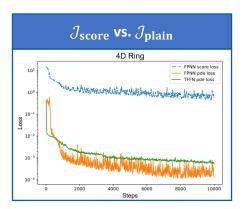
SFP equations		Domain Ω	TFFN			FPNN (Ours)		
		Domain 32	MAE		MAPE	MA	E	MAPE
4D Ring 6D Unimodal 6D Multi-modal		$ \begin{array}{c} [-1.8, 1.8]^4 \\ [-1.2, 1.2]^6 \\ [-2, 2]^6 \end{array} $		10^{-2}	49.25% 293% 92.90%	$5.56 \times 1.48 \times 1.98 \times$	10^{-3}	3.84% 4.33% 12.18%
Exact solution	0.2k steps FPNN (0.2k steps FPNN (TNN) 0.4k steps		0.6k steps Exact solution 0.1k ste		ps FPNN (MLP) 0.2k steps		0.4k steps
24 7 115 08 4 4 95	75 Å	15 M 10 05 05 05	113 Y	, o 4 -1	2.4 ½ 1.6 0.8 4 -4 20 4	9 5 5 6 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9 5 5 6 6 3 3 4 4 4 53 53	13 % 13 % 15 % 15 % 15 % 15 % 15 % 15 %
224 24 15 15 08 08 08 4 14 15 15 15 15 15 15 15 15 15 15 15 15 15	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.5 % 1.0 % 1.0 % 1.0 %	24 ½ 16 3 5 5	, , , , , , , , , , , , , , , , , , ,	2.4 ½ 1.6 0.8 4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4	1.2 ° 0.8 ° 0.4 °	112 Y 2 0.8 2 4 0 4 0 4 0 55	1.8 ½ 1.2 0.6 4 -e 53

10D Gaussian mixture: predicted solutions


Experiments

Efficiency

• **FPNN** successfully learn the multi-modal at **1k** steps, and capture the 6-dimensional peak in **400** steps. Score PDE loss makes the training dynamics more coherent and efficient, so we solve SFP equations much faster than **TFFN**.



J_{SCOTE} for SFP problems

40 Ring MLP
60 Multi-modal TIN N
100 Gaussian mixture TIN N
20D Gaussian mixture MLP
20D Gaussian TIN N

100 Sassain mixture MLP
20D Gaussian TIN N

Steps

Model	Layers	Parameters	MAE	MAPE
TNN	[m, hidden layers, r]			
	[1, 64, 128]	33,792	7.27×10^{-3}	99.82%
	[3, 20, 20, 20, 20]	5,360	4.25×10^{-3}	65.41%
	[3, 64, 64, 64]	34,304	6.91×10^{-4}	7.58%
	[5, 64, 128]	34,816	8.20×10^{-4}	5.66%
	[8, 64, 128]	35,584	5.56×10^{-4}	3.84%
MLP	[d, hidden layers]			
	[4, 8, 8, 8, 8]	256	1.26×10^{-3}	11.36%
	[4, 20, 20, 20, 20]	1,360	9.74×10^{-4}	8.74%
	[4, 64, 64, 64]	8,640	8.81×10^{-4}	6.48%
	[4, 128, 128]	17,152	6.21×10^{-4}	5.39%

20D Gaussian: predicted solutions

4D Ring: FPNN with different networks

Conclusion

- We successfully solve **4-20** dimensional steady-state FP equations for complex physical systems and comprehensive experimental results show great gains in **efficiency**, **accuracy**, **memory** and **computational resource usage**.
- **Time-varying** probability densities have broader applications in physics, finance, mean-field games, and diffusion models, but still face challenges for the normalization condition at any time.
- In the future, we aim to develop an efficient deep-learning solver for general Fokker-Planck equations and look forward to its applications in broader fields.

Thank you!

Paper: https://openreview.net/forum?id=5qg6JPSgCj

Code: https://github.com/niuffs/FPNN

