ComaDICE: Offline Cooperative Multi-Agent Reinforcement Learning with Stationary Distribution Shift Regularization

- The Viet Bui, Singapore Management University, Singapore
- Tien Anh Mai, Singapore Management University, Singapore
- Thanh Hong Nguyen, University of Oregon, USA

Update π

Introduction

- Offline MARL Challenge: The fundamental difficulty is learning from a fixed dataset \mathcal{D} collected by some *behavior policy* μ_{tot} . When we try to optimize a new *learning policy* π_{tot} , it might explore state-action pairs (s,a) that are rare or absent in D. Standard RL value estimation (like Q-learning) struggles here, often overestimating values for these out-of-distribution (OOD) pairs, leading to poor performance. This is the *distributional shift* problem.
- Our Approach: Instead of just penalizing OOD *actions* (like many prior methods), ComaDICE aims to align the overall *state-action visitation frequency* of the learned policy with the behavior policy. This frequency is captured by the **stationary distribution** $\rho^{\pi_{tot}}(s,a)$.

Preliminaries

Model: Cooperative MARL as a Partially Observable Markov Decision Process (POMDP):

$$M = \langle S, A, P, r, Z, O, n, N, \gamma \rangle$$

Goal: Maximize expected joint return $E[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$

Offline Dataset: \mathcal{D} collected by behavior policy μ_{tot}

Stationary Distribution (Occupancy Measure): Probability of visiting state-action (s,a) under policy π_{tot} : $\rho^{\pi_{tot}}(s,a) = (1-\gamma)\sum_{t=0}^{\infty} P(s_t=s,a_t=a)$

Core Idea

Optimize expected return regularized by the f-divergence between learning (π_{tot}) and behavior (μ_{tot}) stationary distributions:

$$\max_{\pi_{tot}} \underbrace{E_{(s,a)\sim\rho^{\pi_{tot}}}[r(s,a)]}_{-\alpha D^f(\rho^{\pi_{tot}}||\rho^{\mu_{tot}})}$$

Maximize Expected Return

Regularize Distribution Shift

 $D^{f}(\rho^{\pi_{tot}}||\rho^{\mu_{tot}}) = E_{(s,a)\sim\rho^{\mu_{tot}}}\left[f\left(\frac{\rho^{\pi_{tot}(s,a)}}{\rho^{\mu_{tot}(s,a)}}\right)\right] \text{ is the } f\text{-divergence } (f \text{ is convex}),$

 α balances reward maximization and distribution matching

Mathematical Formulation & Derivations

Closed-Form Solution: Inner max over w^{tot} has a solution, simplifying to minimization over v^{tot} only:

$$\min_{\nu^{tot}} \tilde{\mathcal{L}}(\nu^{tot}) = (1 - \gamma) E_{s_0}[\nu^{tot}(s_0)] + E_{\rho^{\mu_{tot}}} \left[-\alpha f^* \left(\frac{A_{\nu}^{tot}(s, a)}{\alpha} \right) \right]$$

 f^* is the convex conjugate of f

Optimal $w^{tot*}(s, a) = \max\{0, (f')^{-1}(A_v^{tot}(s, a)/\alpha)\}$

Practical Algorithm & Losses

- Local value nets $v_i(\psi_v)$
- Q-nets $q_i(\psi_q)$
- Policy nets $\pi_i(\eta_i)$
- Mixing nets \mathcal{M}_{θ}

MSE Loss for Q-function:

$$\mathcal{L}_q(\psi_q) = E_{\mathcal{D}} \left[\left(\mathcal{M}_{\theta}[q - \nu] - (r + \gamma \mathcal{M}_{\theta}[\nu'] - \mathcal{M}_{\theta}[\nu]) \right)^2 \right]$$

Value Function Loss: Sample-based version of $\tilde{\mathcal{L}}$

$$\tilde{\mathcal{L}}(\psi_{\nu},\theta) = (1-\gamma)E_{s_0}\left[\mathcal{M}_{\theta}[\nu_{s_0}]\right] + E_{(s,a)}\left[\alpha f^*\left(\frac{\mathcal{M}_{\theta}[q-\nu]}{\alpha}\right)\right]$$

Policy Loss:

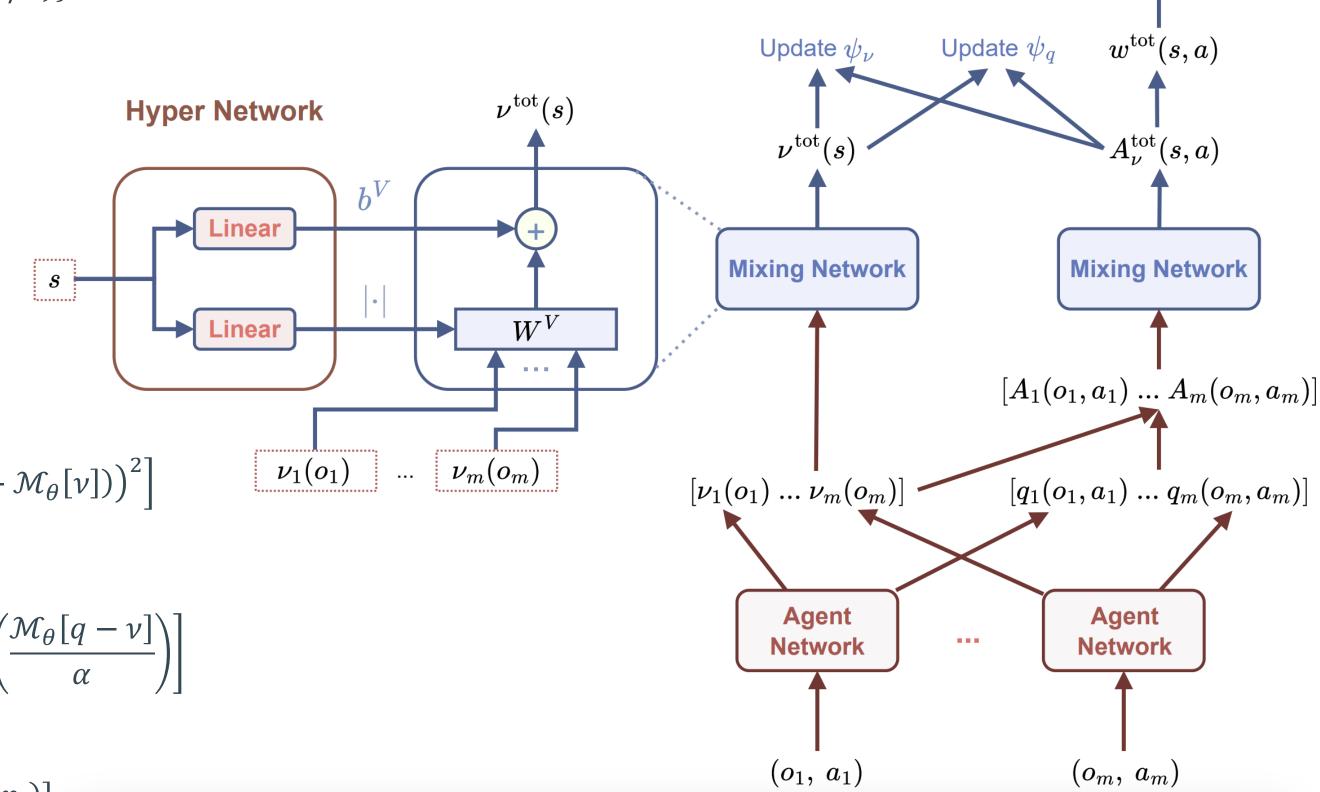
$$\mathcal{L}_{\pi}(\eta_i) = E_{\mathcal{D}}[w^{tot*}(s, a) \log \pi_i (a_i | s_i; \eta_i)]$$

Value Factorization for MARL (CTDE)

Decomposition: Using local functions (v_i, q_i) and a mixing network \mathcal{M}_{θ}

$$\nu^{tot}(s) = \mathcal{M}_{\theta}[\nu(s)], A_{\nu}^{tot}(s, a) = \mathcal{M}_{\theta}[q(s, a) - \nu(s)]$$

Convexity: The objective $\tilde{\mathcal{L}}(\nu,\theta)$ is convex in ν if \mathcal{M}_{θ} has non-negative weights and convex activations (e.g., linear, ReLU).



Experiments & Results

Instances		BCQ	CQL	ICQ	OMIGA	OptDICE	AlberDICE	ComaDICE (ours)
Hopper	expert medium m-replay m-expert	77.9 ± 58.0 44.6 ± 20.6 26.5 ± 24.0 54.3 ± 23.7	159.1 ± 313.8 401.3 ± 199.9 31.4 ± 15.2 64.8 ± 123.3	754.7 ± 806.3 501.8 ± 14.0 195.4 ± 103.6 355.4 ± 373.9	859.6 ± 709.5 1189.3 ± 544.3 774.2 ± 494.3 709.0 ± 595.7	655.9 ± 120.1 204.1 ± 41.9 257.8 ± 55.3 400.9 ± 132.5	844.6 ± 556.5 216.9 ± 35.3 419.2 ± 243.5 515.1 ± 303.4	2827.7 ± 62.9 822.6 ± 66.2 906.3 ± 242.1 1362.4 ± 522.9
Ant	expert medium m-replay m-expert	1317.7 ± 286.3 1059.6 ± 91.2 950.8 ± 48.8 1020.9 ± 242.7	1042.4 ± 2021.6 533.9 ± 1766.4 234.6 ± 1618.3 800.2 ± 1621.5	2050.0 ± 11.9 1412.4 ± 10.9 1016.7 ± 53.5 1590.2 ± 85.6	2055.5 ± 1.6 1418.4 ± 5.4 1105.1 ± 88.9 1720.3 ± 110.6	1717.2 ± 27.0 1199.0 ± 26.8 869.4 ± 62.6 1293.2 ± 183.1	1896.8 ± 33.7 1304.3 ± 2.6 1042.8 ± 80.8 1780.0 ± 23.6	2056.9 ± 5.9 1425.0 ± 2.9 1122.9 ± 61.0 1813.9 ± 68.4
Half Cheetah	expert medium m-replay m-expert	$\begin{array}{c} 2992.7 \pm 629.7 \\ 2590.5 \pm 1110.4 \\ -333.6 \pm 152.1 \\ 3543.7 \pm 780.9 \end{array}$	1189.5 ± 1034.5 1011.3 ± 1016.9 1998.7 ± 693.9 1194.2 ± 1081.0	2955.9 ± 459.2 2549.3 ± 96.3 1922.4 ± 612.9 2834.0 ± 420.3	3383.6 ± 552.7 3608.1 ± 237.4 2504.7 ± 83.5 2948.5 ± 518.9	2601.6 ± 461.9 305.3 ± 946.8 -912.9 ± 1363.9 -2485.8 ± 2338.4	3356.4 ± 546.9 522.4 ± 315.5 440.0 ± 528.0 2288.2 ± 759.5	4082.9 ± 45.7 2664.7 ± 54.2 2855.0 ± 242.2 3889.7 ± 81.6

