CONTEXTUALIZING BIOLOGICAL PERTURBATION EXPERIMENTS THROUGH LANGUAGE

Menghua Wu*†

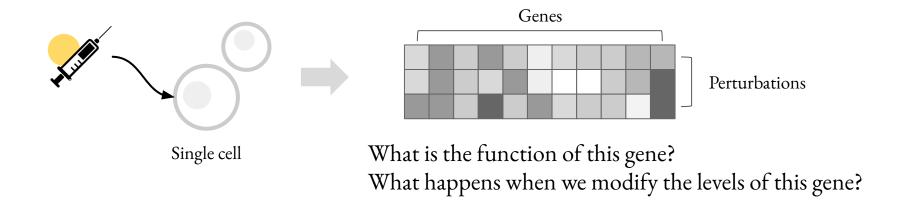
Massachusetts Institute of Technology Cambridge, MA, USA Russell Littman, Jacob Levine

Biology Research & AI Development, Genentech South San Francisco, CA, USA

Lin Qiu†

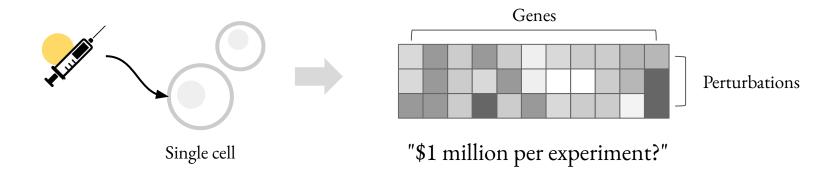
Meta AI Menlo Park, CA, USA David Richmond, Tommaso Biancalani, Jan-Christian Hütter*

Biology Research & AI Development, Genentech


South San Francisco, CA, USA

Code and data

Genetic perturbation screens


allow biologists to **manipulate** and **measure** biological systems to elucidate their underlying molecular mechanisms.

Genetic perturbation screens

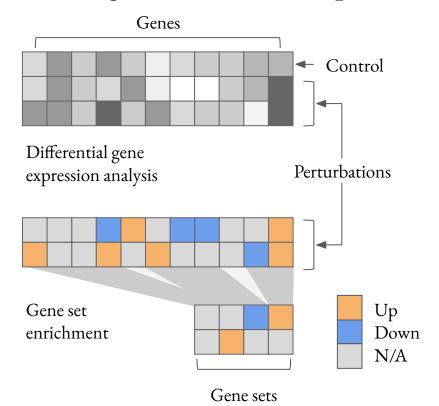
allow biologists to **manipulate** and **measure** biological systems to elucidate their underlying molecular mechanisms.

are very expensive to run and interpret!

Our goals

Facilitate efficient experimental design → Infer the effects of unseen perturbations

Reduce human annotation burden → Automatically summarize high-dimensional readouts in context of known biology

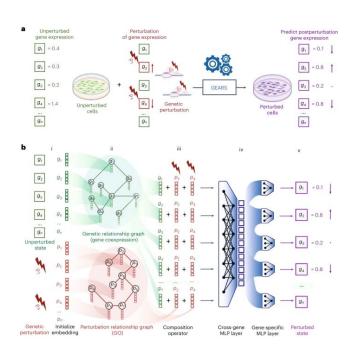

Our contributions

Claim: Perturbation modeling should reflect downstream analyses. From individual cells / genes \rightarrow statistical insights.

PerturbQA: A new benchmark for perturbations + LLM reasoning for structured biological data / discovering new biology.

SUMMER: Domain-informed LLM baseline for predicting effects of unseen perturbations

Discrete insights from transcriptomic data


Biologists "read" continuous gene expression through discrete endpoints.

"strong downregulation of NUP62"

"loss of C7orf26 impacted Integrator subunit abundance"

"TMEM242 produced a signature resembling loss of ATP synthase"

Current machine learning perspective

Predict effects of unseen perturbations.

Knowledge graphs relate seen vs. unseen perturbations → This makes sense!

However:

SONN methods discard rich, textual semantics.

Most focus on regressing log-fold change of genes that actually change.

PerturbQA

Set of real, unsolved tasks related to perturbations, designed as a benchmark for biological reasoning.

Differential expression

Is a knockdown of **ABCE1** in K562 cells likely to result in **differential expression** of **GABARAP**?

Direction of change

Is a knockdown of **ABCE1** in K562 cells likely to result **decrease or increase** of **GABARAP**?

Gene set

How are the following genes **related**, and why do they **induce similar downstream effects when perturbed**? **CFLAR, VIM, ...**

How are the following genes **related**, and why do they **respond similarly to perturbation**? **CFLAR**, **VIM**, **CAPG**, ...

Data release

3 tasks: Differential expression, direction of change, gene set summarization

DE/Dir: 4 datasets ("cell lines") at individual gene level; 1 dataset at gene set level

2 sets of human annotations regarding gene cluster function

Harmonized knowledge graphs with all nodes/edges mapped to text, for biological context

Database	Information
UniProt	Gene
Ensembl	Gene
Gene Ontology	Gene, relations
CORUM	Relations
STRING	Relations
Reactome	Relations
BioPlex	Relations

Data release

Differential expression and direction of change Datasets can be loaded as follows. from pertqa import load_de, load_dir # options: "k562" "rpe1" "hepg2" "jurkat" "k562_set" data_de = load_de("k562") # train/test splits X_train = data_de["train"] X_test = data_de["test"] data_dir = load_dir("k562")

Results

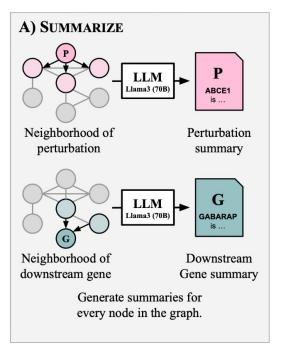
Existing methods perform poorly on PerturbQA

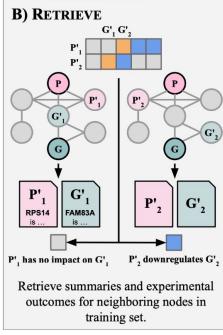
	Model	K562	RPE1	HepG2	Jurkat	K562-Set
п	PHYSICAL	0.53	0.52	0.52	0.54	0.55
<u>.</u> [GAT	$0.55{\scriptstyle\pm.02}$	$0.57 {\scriptstyle\pm .02}$	$0.57 {\pm}.02$	$0.55 \pm .03$	$0.54 \pm .01$
ess	GEARS	$0.54 \pm .01$	$0.50 \pm .01$	$0.48 \pm .02$	$0.51 {\scriptstyle \pm .01}$	$0.49 \pm .01$
expression	SCGPT	$0.52 {\pm}.00$	$0.52 {\pm}.00$	$0.48 {\pm}.00$	$0.51 \pm .00$	$0.52 \pm .00$
ıl ex	GENEPT-GENE	$0.57 \pm .02$	$0.54 \pm .00$	$0.55 \pm .02$	$0.55 \pm .01$	$0.58 \pm .01$
ıti	GENEPT-PROT	$0.57 {\scriptstyle \pm .01}$	$0.56 \pm .00$	$0.54 \pm .01$	$0.55 \pm .01$	$0.58 \pm .01$
Differential	LLM (No CoT)	$0.52 {\scriptstyle \pm .01}$	$0.51 \pm .00$	$0.51 \scriptstyle{\pm .01}$	$0.52 \pm .00$	$0.50 \pm .00$
ffe	LLM (No retrieval)	$0.51 {\scriptstyle \pm .01}$	$0.48 \pm .00$	$0.49 \scriptstyle{\pm .01}$	$0.49 \scriptstyle{\pm .01}$	$0.50 {\scriptstyle \pm .01}$
Ö	Retrieval (No LLM)	$0.58 {\scriptstyle \pm .02}$	$0.58 \pm .01$	$0.55 {\scriptstyle \pm .00}$	$0.55 {\scriptstyle \pm .01}$	0.64 ±.00
	:					
	GAT	$0.58 \pm .06$	$0.60{\scriptstyle \pm .04}$	$0.64 \pm .05$	$0.59 {\scriptstyle \pm .04}$	$0.53{\scriptstyle\pm.03}$
Direction of change	GEARS	$0.64 \pm .01$	$0.60 \pm .01$	$0.52 {\scriptstyle \pm .01}$	$0.51 \pm .01$	$0.59{\scriptstyle \pm .02}$
	SCGPT	$0.48 \pm .00$	$0.53 \pm .00$	$0.51 {\pm}.00$	$0.51 \pm .00$	$0.54 \pm .00$
of cl	GENEPT-GENE	$0.53 \pm .05$	$0.57 \pm .03$	$0.58 \pm .03$	$0.57 \pm .02$	$0.56 \pm .02$
n c	GENEPT-PROT	$0.57 {\scriptstyle \pm .01}$	$0.57 {\pm}.02$	$0.55{\scriptstyle\pm.01}$	$0.58 {\scriptstyle \pm .03}$	$0.57 {\scriptstyle \pm .02}$
10.	LLM (No CoT)	$0.50 {\scriptstyle \pm .01}$	$0.49 {\scriptstyle \pm .00}$	$0.49 {\scriptstyle \pm .00}$	$0.50 {\scriptstyle \pm .01}$	$0.50 {\scriptstyle \pm .01}$
ecı	LLM (No retrieval)	$0.49 {\scriptstyle \pm .04}$	$0.52 {\scriptstyle \pm .03}$	$0.51 {\scriptstyle \pm .06}$	$0.53 {\scriptstyle \pm .05}$	$0.45{\scriptstyle\pm.18}$
)ir	Retrieval (No LLM)	$0.50 {\pm}.00$	$0.50 {\scriptstyle \pm .00}$	$0.50 {\pm}.00$	$0.50 {\pm}.00$	$0.50 \pm .00$

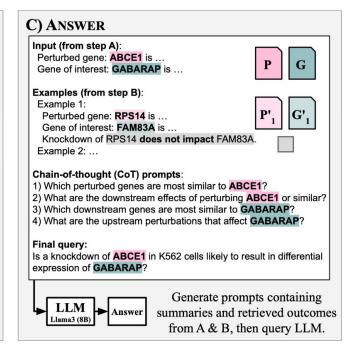
Macro AUROC (mean over downstream genes)

Results

Existing methods perform poorly on PerturbQA

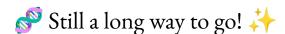

Naively applying LLMs also performs poorly


	Model	K562	RPE1	HepG2	Jurkat	K562-Set	
_	PHYSICAL	0.53	0.52	0.52	0.54	0.55	
ior	GAT	$0.55 {\scriptstyle \pm .02}$	$0.57 {\scriptstyle \pm .02}$	$0.57 {\scriptstyle \pm .02}$	$0.55 {\scriptstyle \pm .03}$	$0.54 {\scriptstyle \pm .01}$	
ess	GEARS	$0.54 {\scriptstyle \pm .01}$	$0.50 {\scriptstyle \pm .01}$	$0.48 {\scriptstyle \pm .02}$	$0.51 \scriptstyle{\pm .01}$	$0.49 {\scriptstyle \pm .01}$	
xpr	SCGPT	$0.52 {\pm}.00$	$0.52 {\pm}.00$	$0.48 {\pm}.00$	$0.51 {\pm}.00$	$0.52 {\pm}.00$	
Differential expression	GENEPT-GENE	$0.57 {\pm}.02$	$0.54 \pm .00$	$0.55{\scriptstyle\pm.02}$	$0.55 \pm .01$	$0.58 \pm .01$	
ıtί	GENEPT-PROT	$0.57 {\scriptstyle \pm .01}$	$0.56 {\scriptstyle \pm .00}$	$0.54 {\scriptstyle \pm .01}$	$0.55 {\scriptstyle \pm .01}$	$0.58 {\scriptstyle \pm .01}$	
reı	LLM (No CoT)	$0.52 {\scriptstyle \pm .01}$	$0.51 {\scriptstyle \pm .00}$	$0.51 {\scriptstyle \pm .01}$	$0.52 {\scriptstyle \pm .00}$	$0.50 \pm .00$	
He	LLM (No retrieval)	$0.51 {\scriptstyle \pm .01}$	$0.48 \pm .00$	$0.49 \pm .01$	$0.49 {\scriptstyle \pm .01}$	$0.50 \pm .01$	
$\tilde{\Box}$	Retrieval (No LLM)	$0.58 {\scriptstyle \pm .02}$	$0.58 \pm .01$	$0.55 {\scriptstyle \pm .00}$	$0.55 {\scriptstyle \pm .01}$	$0.64 \pm .00$	
	:						
4)	GAT	$0.58 \pm .06$	$0.60 \pm .04$	$0.64 \pm .05$	$0.59 \pm .04$	$0.53 \pm .03$	
Direction of change	GEARS	$0.64 \pm .01$	$0.60 \pm .01$	$0.52 {\scriptstyle \pm .01}$	$0.51 {\pm}.01$	$0.59 {\scriptstyle \pm .02}$	
	SCGPT	$0.48 \pm .00$	$0.53 \pm .00$	$0.51 \pm .00$	$0.51 \pm .00$	$0.54 \pm .00$	
e Je	GENEPT-GENE	$0.53{\scriptstyle \pm .05}$	$0.57 {\pm}.03$	$0.58 {\scriptstyle \pm .03}$	$0.57 {\scriptstyle \pm .02}$	$0.56 {\scriptstyle \pm .02}$	
пC	GENEPT-PROT	$0.57 {\scriptstyle \pm .01}$	$0.57 {\scriptstyle \pm .02}$	$0.55 {\scriptstyle \pm .01}$	$0.58 {\scriptstyle \pm .03}$	$0.57 {\scriptstyle \pm .02}$	
tio	LLM (No CoT)	$0.50 \pm .01$	$0.49 \pm .00$	$0.49 \pm .00$	$0.50 \pm .01$	$0.50 \pm .01$	
oe.	LLM (No retrieval)	$0.49 \pm .04$	$0.52 \pm .03$	$0.51 \pm .06$	$0.53 \pm .05$	$0.45 \pm .18$	
Dir	Retrieval (No LLM)	$0.50 {\pm}.00$					

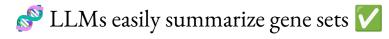

Macro AUROC (mean over downstream genes)

Domain-informed proof of concept

"SUMMER" – Summarize, Retrieve, Answer



Results


Simple reasoning template + retrieving experimental outcomes = does ok

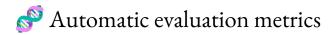
Differential expression

Model K562 RPE1 HepG2 K562-Set Jurkat PHYSICAL 0.530.520.520.540.55**GAT** $0.55 \pm .02$ $0.57 \pm .02$ $0.57 \pm .02$ $0.55 \pm .03$ $0.54 \pm .01$ **GEARS** $0.54 \pm .01$ $0.50 \pm .01$ $0.48 \pm .02$ $0.51 \pm .01$ $0.49 \pm .01$ SCGPT $0.52 \pm .00$ $0.52 \pm .00$ $0.48 \pm .00$ $0.51 \pm .00$ $0.52 \pm .00$ $0.55 \pm .02$ GENEPT-GENE $0.57 \pm .02$ $0.54 \pm .00$ $0.55 \pm .01$ $0.58 \pm .01$ GENEPT-PROT $0.57 \pm .01$ $0.56 \pm .00$ $0.54 \pm .01$ $0.55 \pm .01$ $0.58 \pm .01$ LLM (No CoT) $0.52 \pm .01$ 0.51 + .000.51 + .01 $0.52 \pm .00$ $0.50 \pm .00$ $0.50 \pm .01$ LLM (No retrieval) $0.51 \pm .01$ $0.48 \pm .00$ $0.49 \pm .01$ $0.49 \pm .01$ Retrieval (No LLM) $0.58 \pm .02$ $0.58 \pm .01$ $0.55 \pm .00$ $0.55 \pm .01$ $0.64 \pm .00$ SUMMER $0.60 \pm .00$ $0.58 \pm .00$ $0.61 \pm .00$ $0.58 \pm .00$ $0.61 \pm .00$ $0.53 \pm .03$ **GAT** $0.58 \pm .06$ $0.60 \pm .04$ $0.64 \pm .05$ $0.59 \pm .04$ Direction of change **GEARS** $0.64 \pm .01$ $0.60 \pm .01$ $0.52 \pm .01$ $0.51 \pm .01$ $0.59 \pm .02$ **SCGPT** $0.48 \pm .00$ $0.53 \pm .00$ $0.51 \pm .00$ $0.51 \pm .00$ $0.54 \pm .00$ GENEPT-GENE $0.53 \pm .05$ $0.58 \pm .03$ $0.57 \pm .02$ $0.56 \pm .02$ $0.57 \pm .03$ **GENEPT-PROT** $0.57 \pm .01$ $0.57 \pm .02$ $0.55 \pm .01$ $0.58 \pm .03$ $0.57 \pm .02$ $0.49 \pm .00$ LLM (No CoT) $0.50 \pm .01$ $0.49 \pm .00$ $0.50 \pm .01$ $0.50 \pm .01$ LLM (No retrieval) $0.52 \pm .03$ $0.53 \pm .05$ $0.45 \pm .18$ $0.49 \pm .04$ $0.51 \pm .06$ Retrieval (No LLM) $0.50 \pm .00$ $0.66 \pm .01$ $0.69 \pm .01$ SUMMER $0.62 \pm .01$ $0.64 \pm .01$ $0.65 \pm .00$

Results (gene set summarization)

Genes	Annotation	Gene sets (combined)	SUMMER (8b)
SLC25A5, EIF4B, SLC25A3, RPL3,, RPL41	translation	cytosol, RNA binding, cytoplasm, membrane, GTP hydrolysis	Ribosomal and Translation Regulation Gene Set The gene set is comprised of genes involved in protein synthesis, translation, and ribosomal function, with a focus on the regulation of protein synthesis and the assembly of ribosomal subunits.
ZC3H13, CBLL1, METTL14, METTL3, PSMG1, RBM15		nucleus, nucleo plasm, RNA N6- methyladenosine methyltransferase complex, mRNA processing	M6A Methylation Complex-Associated Genes. The gene set is composed of genes involved in the regulation of N6-methyladenosine (m6A) methylation of RNAs, influencing mRNA splicing and RNA processing. These genes are associated with the WMM complex and interact with each other to modulate gene expression.
CMTR2, RBM14- RBM4, RBM4, UNCX, WDFY3	unknown	no significant sets	RNA Processing and Regulation Gene Set. The gene set is composed of genes involved in RNA processing and regulation, including mRNA cap modification, alternative splicing, and RNA-binding activities. These genes converge on pathways related to mRNA stability, translation, and cellular differentiation.

Results (gene set summarization)


Genes	Annotation	Gene sets (combined)	SUMMER (8b)
SLC25A5, EIF4B, SLC25A3, RPL3,, RPL41	translation	cytosol, RNA binding, cytoplasm, membrane, GTP hydrolysis	Ribosomal and Translation Regulation Gene Set The gene set is comprised of genes involved in protein synthesis, translation, and ribosomal function, with a focus on the regulation of protein synthesis and the assembly of ribosomal subunits.
ZC3H13, CBLL1, METTL14, METTL3, PSMG1, RBM15		nucleus, nucleo plasm, RNA N6- methyladenosine methyltransferase complex, mRNA processing	M6A Methylation Complex-Associated Genes. The gene set is composed of genes involved in the regulation of N6-methyladenosine (m6A) methylation of RNAs, influencing mRNA splicing and RNA processing. These genes are associated with the WMM complex and interact with each other to modulate gene expression.
CMTR2, RBM14- RBM4, RBM4, UNCX, WDFY3	unknown	no significant sets	RNA Processing and Regulation Gene Set. The gene set is composed of genes involved in RNA processing and regulation, including mRNA cap modification, alternative splicing, and RNA-binding activities. These genes converge on pathways related to mRNA stability, translation, and cellular differentiation.

LLM equal or better to the classical gene set enrichment results in 92% of cases.

Agrees with the independent annotator in 72% of cases.

Results (gene set enrichment)

	Gene clusters				Perturbation clusters				
Enrichment	Top	$R_{ ext{ROUGE1}}\uparrow$	$P_{ ext{BERT}} \uparrow$	$R_{ ext{BERT}} {\uparrow}$	$F_{ m BERT} {\uparrow}$	$R_{ ext{ROUGE1}}\uparrow$	$P_{ ext{BERT}} \uparrow$	$R_{ ext{BERT}} \uparrow$	$F_{ m BERT} {\uparrow}$
Gene Ontology	5	0.17	0.64	0.66	0.62	0.38	0.66	0.72	0.68
Gene Ontology	10	0.32	0.60	0.65	0.60	0.60	0.62	0.71	0.65
Reactome	5	0.18	0.60	0.65	0.60	0.49	0.60	0.68	0.62
Reactome	10	0.27	0.54	0.64	0.56	0.59	0.56	0.67	0.60
CORUM	5	0.07	0.63	0.45	0.42	0.45	0.64	0.63	0.60
CORUM	10	0.07	0.61	0.44	0.41	0.47	0.61	0.62	0.58
Combined	5	0.14	0.62	0.65	0.61	0.41	0.63	0.71	0.66
Combined	10	0.27	0.59	0.65	0.59	0.63	0.57	0.69	0.62
SUMMER (8b)	desc	0.57	0.63	0.76	0.69	0.26	0.63	0.75	0.68
SUMMER (8b)	name	0.20	0.74	0.76	0.75	0.12	0.75	0.76	0.75
SUMMER (70b)	desc	0.45	0.63	0.77	0.69	0.59	0.65	0.80	0.72
SUMMER (70b)	name	0.15	0.73	0.76	0.74	0.37	0.77	0.82	0.79

Takeaways

- 1. Biology has lots of assays, modalities, domain knowledge but language is a natural means for harmonizing these data.
- 2. Using LMs for biology requires more "biology" than classic approaches.
- 3. Modeling perturbations has so much room for creative solutions that leverage prior knowledge and model causal relationships

Come play with our data!