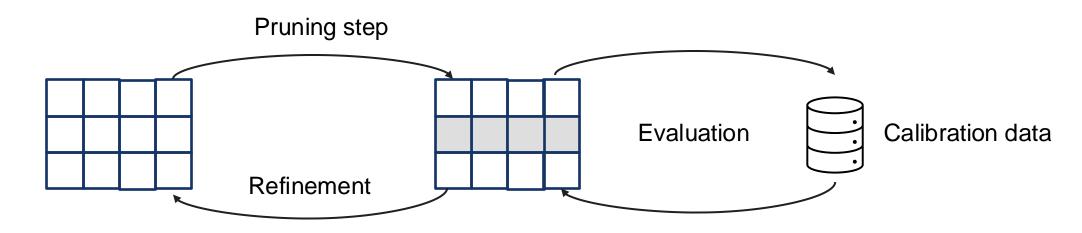


You Only Prune Once: Designing Calibration-Free Model Compression with Policy Learning

Ayan Sengupta, Siddhant Chaudhury, Tanmoy Chakraborty

Structured Model Pruning



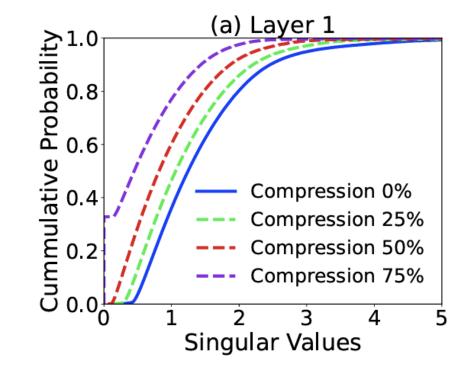
Existing structured pruning methods – SliceGPT (Ashkboos et al., 2024), LLM Pruner (Ma et al., 2023), Layer Collapse (Yang et al., 2024) use calibration data to determine the unimportant components of a pretrained model for pruning.

Limitations

- 1. Over-reliance on calibration data makes the compressed model sensitive to the data selection, becomes less reliable on downstream tasks (Ji et al., 2025)
- 2. Recovery fine-tuning (RFT) is crucial for preserving performance of the models, post-compression

Can we use Intrinsic Metrics for Pruning

Corollary 3.3 (Slicing shrinks the range of the spectrum). Let $W \in \mathbb{R}^{n \times d}$ be a weight matrix, and let $W' \in \mathbb{R}^{m \times d}$ be a matrix obtained by slicing off rows of W so that $m \leq n$. Then, the range of singular values of W' is a subset of the range of singular values of W.

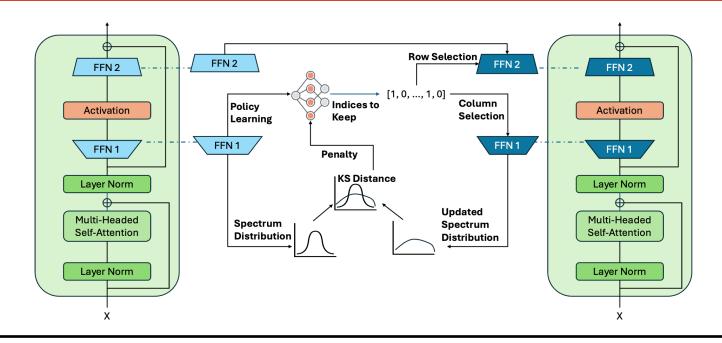


Singular values of a matrix determine the importance of each component.

With more compression, the distribution of singular values becomes more right-skewed

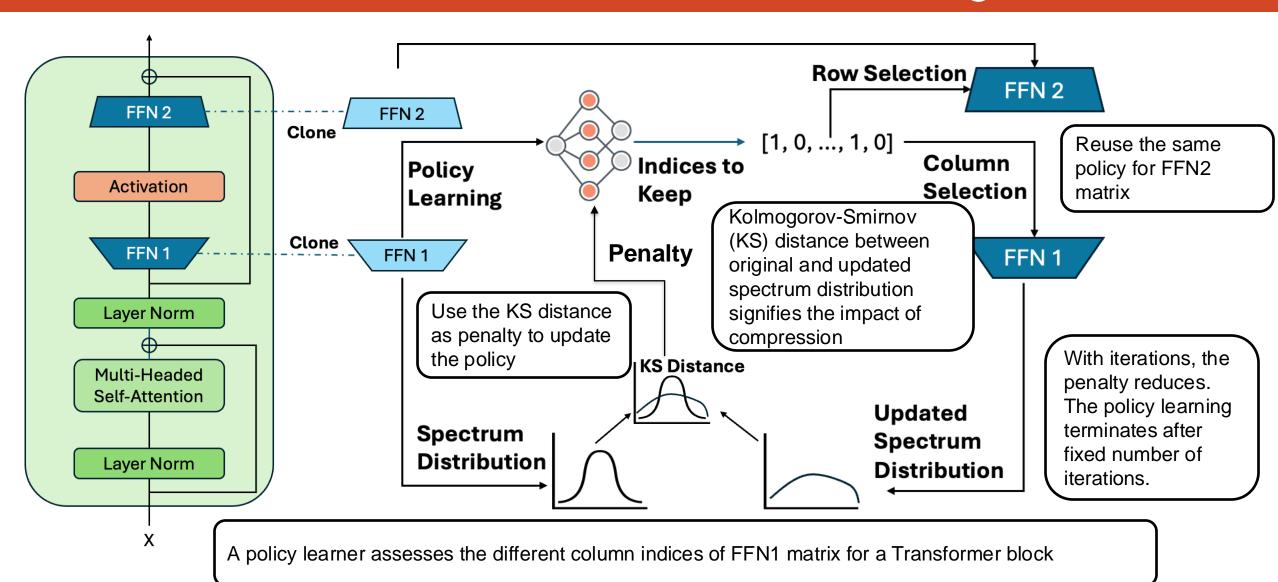
Can we preserve the singular value structure (spectral structure) to preserve the performance of compressed model?

PruneNet: Calibration-free Structured Pruning



- **PruneNet** treats model compression as a policy-learning process that assesses the parameter importance once (using intrinsic methods) and can reuse the policy to compress the model at multiple compression ratios, at once.
- PruneNet is highly flexible, reusable and does not use sensitive and unreliable mechanisms like calibration.

PruneNet: Calibration-free Structured Pruning



Effectiveness of PruneNet: Empirical Evidence

Method	Sparsity	Effective Sparsity	FLOPs	Avg. Zero-shot Acc	
Dense	0%	0.0%	1.35e+13 (1.00x)	69.0	
SliceGPT -	20%	<u>9</u> .4%	1.23e+13(1.10x)	58.2	
PruneNet	20%	12.0%	1.18e+13 (1.15x)	61.7	
SliceGPT -	25%	- $ 15.3%$	1.14e+13(1.18x)	55.5	
PruneNet	25%	16.0%	1.13e+13 (1.20x)	58.6	
SliceGPT -	30%	$ 2\overline{1}.\overline{4}\%$ $ -$	$1.07e+13(1.27x)^{-}$	51.5	
PruneNet	30%	19.0 %	1.09e+13 (1.24x)	55.5	

Model	Method	Throughput (Token/sec)		
	Dense	11.96		
LLaMA-2-7B	SliceGPT	12.82		
	PruneNet	20.74		
	Dense	<u>-</u> 20.20		
Phi-2	SliceGPT	18.48		
	PruneNet	29.50		

PruneNet achieves higher effective sparsity and efficiency while maintaining better performance on downstream tasks.

Effective sparsity indicates the memory reduction in the compressed model.

LLaMA-2-7B compressed with PruneNet exhibits 73% better inference throughput than the original model.

Performance of Compressed LLMs without RFT

Model	Comp. Ratio	Method	PIQA	WinoGrande	HellaSwag	ARC-e	ARC-c	Avg.
LLaMA-2-7B	0%	Dense	79.11 (100%)	69.06 (100%)	75.99 (100%)	74.58 (100%)	46.25 (100%)	69.00 (100%)
	20%	SliceGPT	69.42 (88%)	65.11 (94%)	59.04 (78%)	- 59.76 (80%) -	$\bar{37.54} (81\%)^{-}$	58.17 (84%)
		PruneNet	75.30 (95%)	65.51 (95%)	66.43 (87%)	63.80 (85%)	37.29 (81%)	61.67 (89%)
	25%	SliceGPT	66.87 (84%)	$-63.38(92\%)^{-}$	54.16 (71%)	58.46 (78%)	34.56 (75%)	55.48 (80%)
		PruneNet	72.09 (91%)	62.43 (90%)	62.33 (82%)	60.14 (81%)	36.18 (78%)	58.63 (85%)
	30%	SliceGPT	63.55 (80%)	61.33 (89%)	49.62 (65%)	- 51.77 (69 %) -	31.23 (67%)	51.50 (75%)
		PruneNet	71.11 (90%)	61.09 (88%)	58.30 (77%)	53.20 (71%)	33.53 (72%)	55.45 (80%)
Phi-2	0%	Dense	79.11 (100%)	75.77 (100%)	73.83 (100%)	78.32 (100%)	54.18 (100%)	72.24 (100%)
	20%	SliceGPT	71.87 (91%)	- 67 .8 0 (8 9 %)	- 57.76 (78%) ·	- ⁻ 58.00 (74%) ⁻	35.32 (65%)	58.15 (80%)
		PruneNet	74.37 (94%)	70.80 (93%)	65.53 (89%)	74.71 (95%)	47.53 (88%)	66.59 (92%)
	-25%	SliceGPT	- 69.21 (88 %)	65.35 (86%)	52.40 (71%)	53.7 (69%)	31.66 (58%)	54.46 (75%)
		PruneNet	74.37 (94%)	68.98 (91%)	62.18 (84%)	70.54 (90%)	44.45 (82%)	64.10 (89%)
	30%	SliceGPT	65.94 (83%)	63.14 (83%)	47.56 (64%)	53.03 (68%)	30.29 (56%)	51.99 (72%)
		PruneNet	72.80 (92%)	67.48 (89%)	56.80 (77%)	67.55 (86%)	40.61 (75%)	61.05 (84%)

Downstream performance comparison of PruneNet and SliceGPT. PruneNet consistently outperforms other methods even in the absence of recovery fine-tuning (RFT).

Importance of PruneNet for Efficient Model Pruning

Key takeaways:

- A. PruneNet is highly reusable, where the compression policy learned at lower compression ratio can be used to compress model at higher compression ratio, while significantly retaining performance.
- PruneNet is also faster than most competitive compression methods. LLaMA-2-7B model can be compressed in just 15 minutes, 50% faster than SliceGPT
- c. PruneNet is architecture-agnostic and can be applied on any pre-trained network, without the need for any calibration