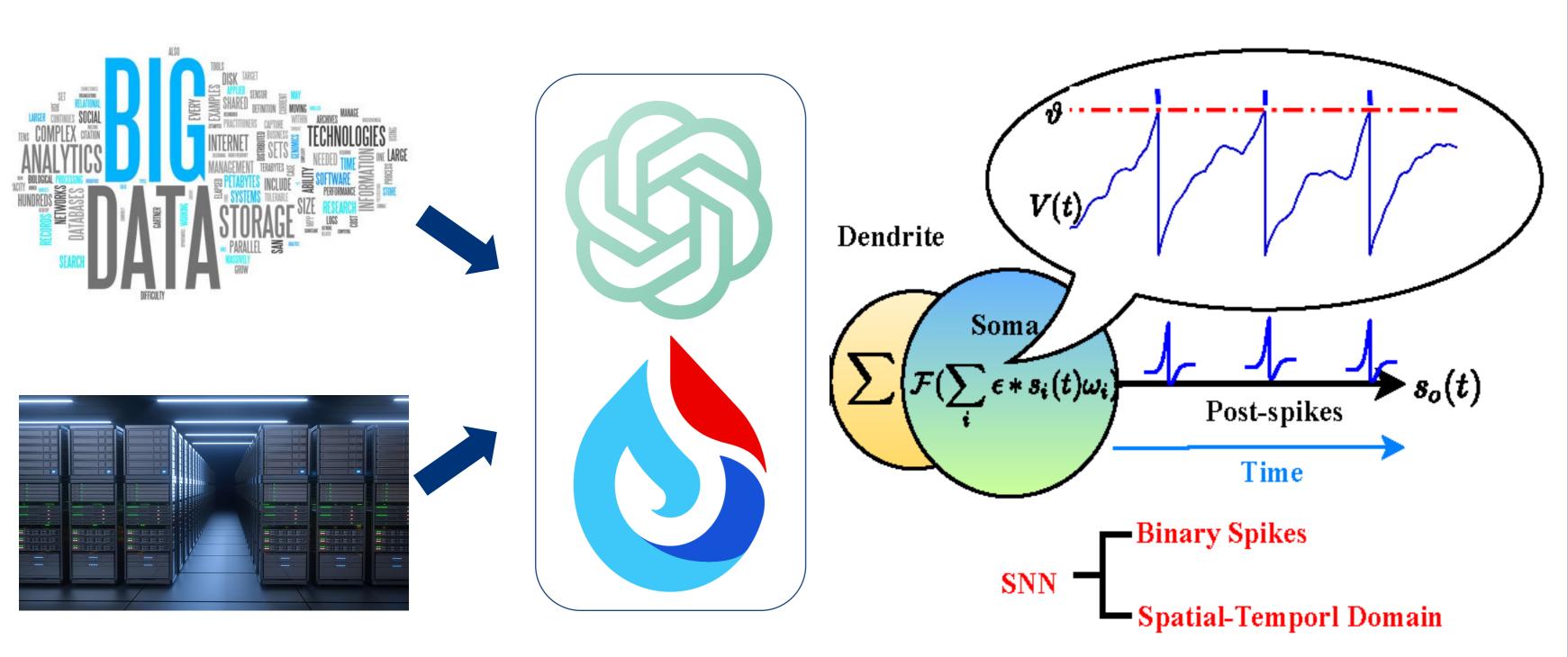


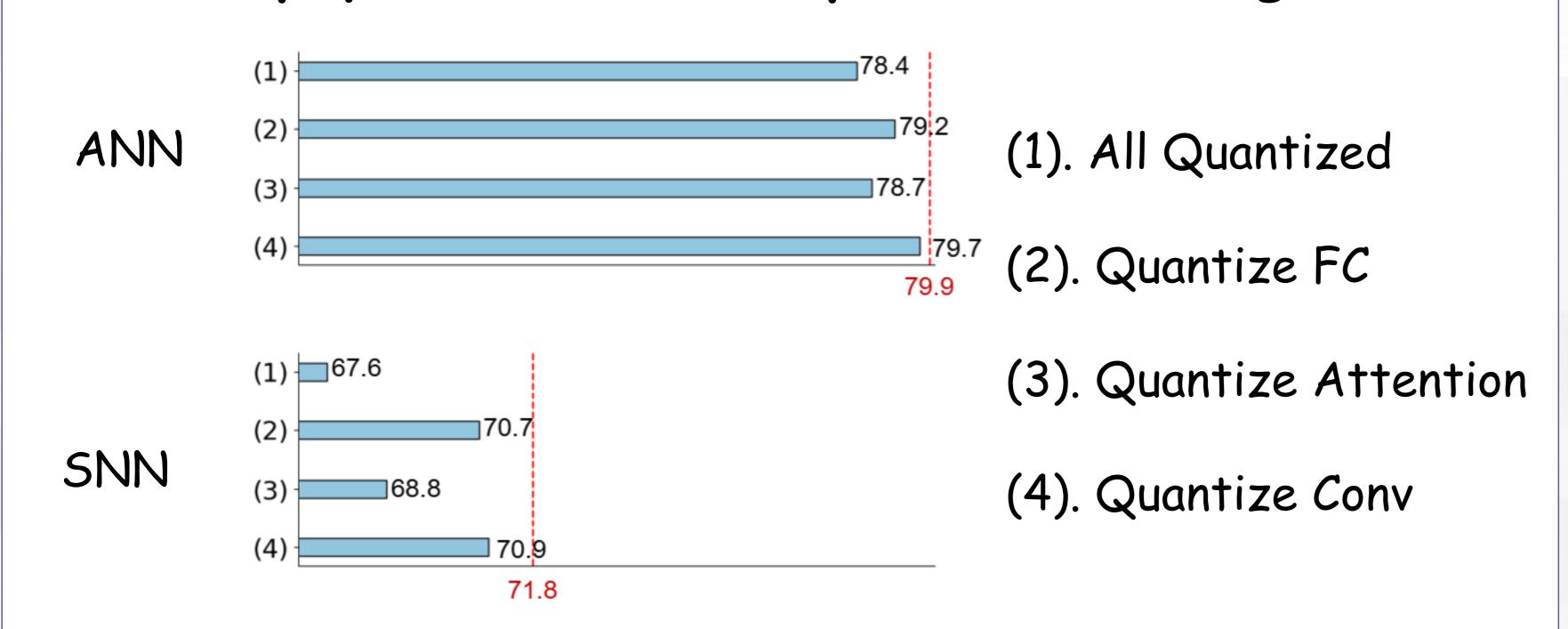
Quantized Spike-driven Transformer

Xuerui Qiu, Malu Zhang, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu, Yimeng Shan, Yang Yang, Haizhou Li

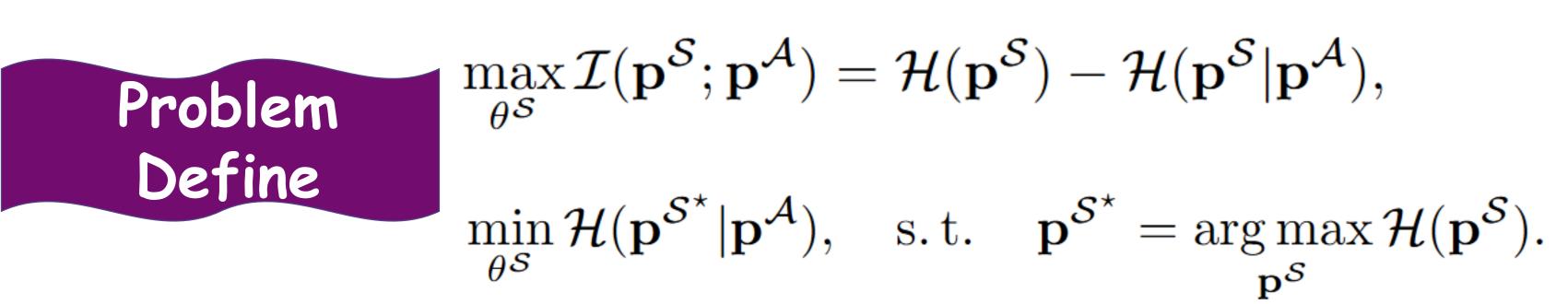


Paper

Motivation

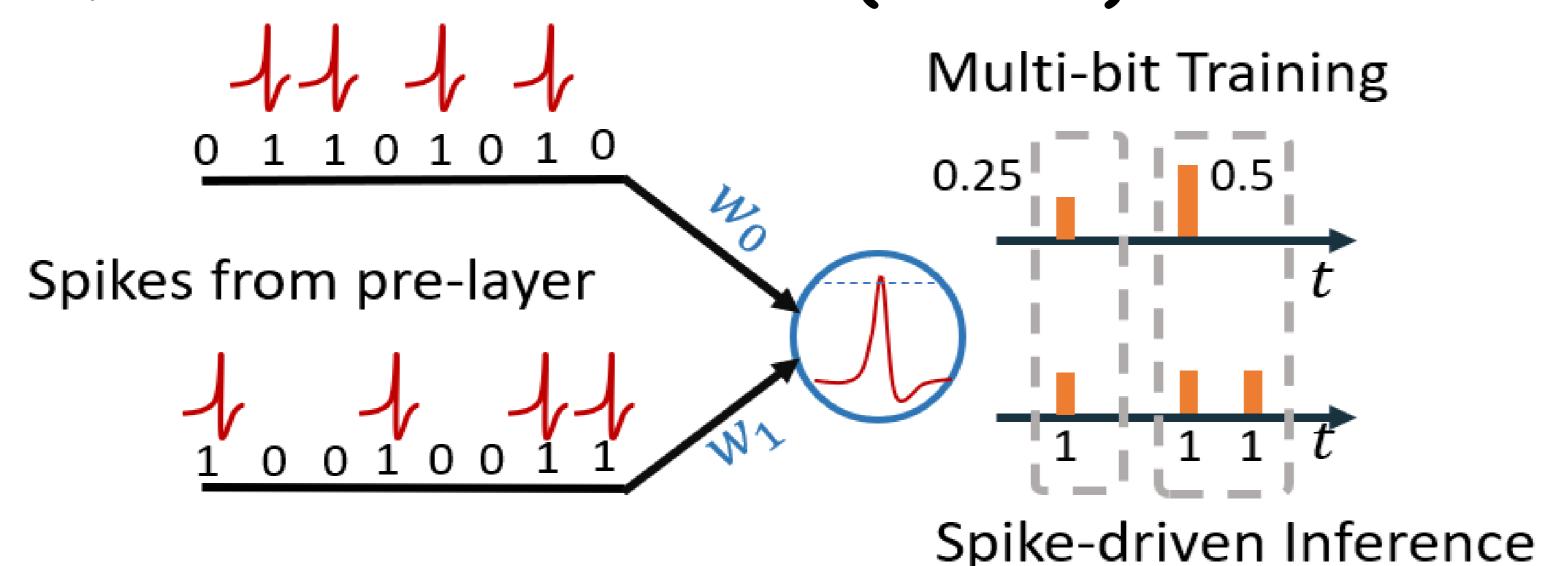

(a) High energy consumption

(b) Energy-efficient alternative

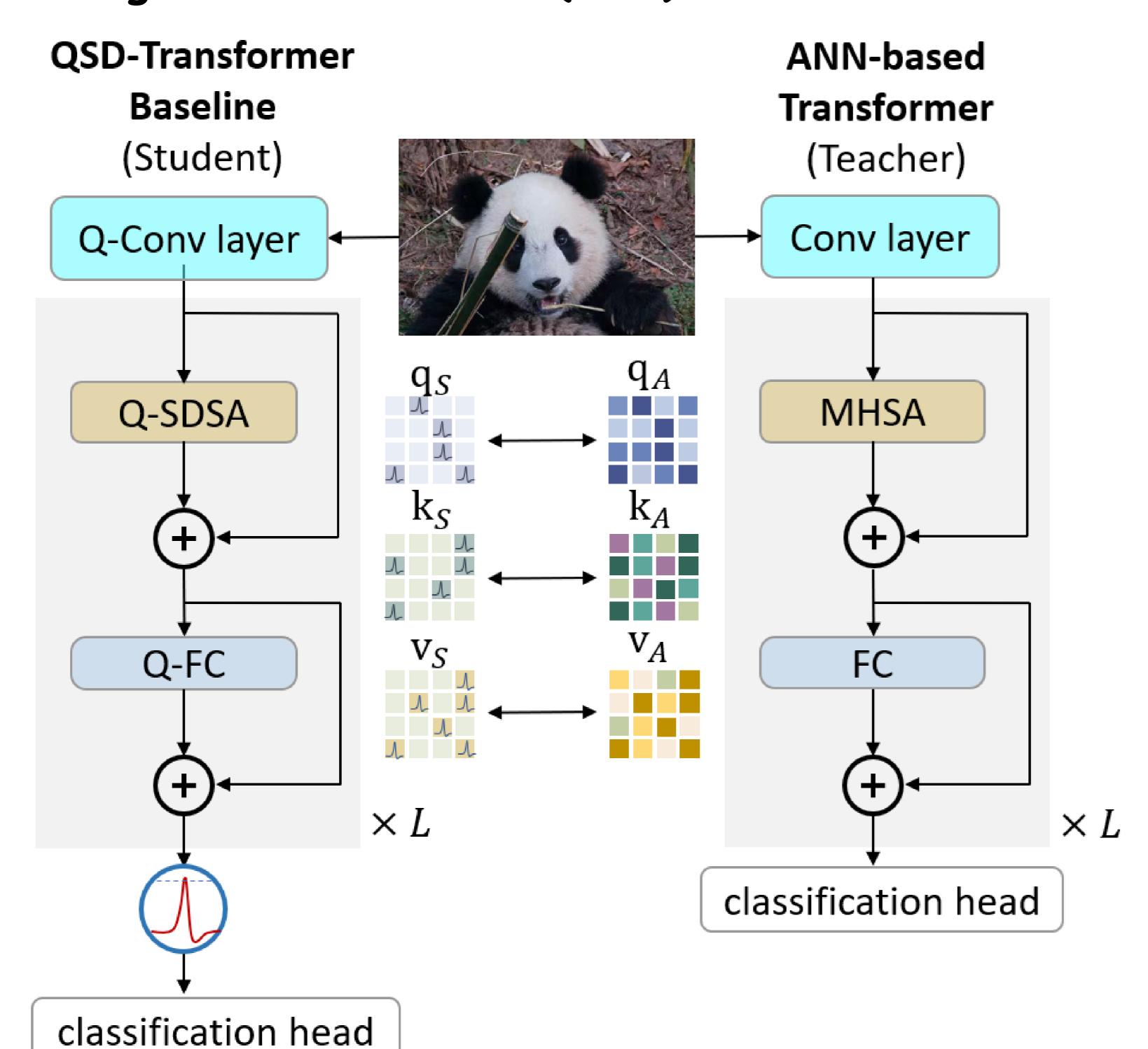

Tradition Transformers significant demands on the storage focusing on maximizing the information entropy. andcomputational capabilities of neuromorphic chips, thereby limiting their deployment on edge devices. Brain-inspired spiking neural networks (SNNs) provide an energy efficient alternative to deep learning.

Problem Analysis

> Directly quantize leads to performance degradation


> Spike Information Distortion (SID) Problem

Addressing the performance degradation of the QSD-Transformer baseline is equivalent to maximizing the mutual information entropy between it and the quantized Transformer in ANNS


Method

> Information Enhanced LIF (IE-LIF)

we propose the information-enhanced LIF (IE-LIF) neuron and adjust the information distribution of Q-SDSA at the lower level,

> Fine-grained Distillation (FGD)

we achievethe optimization goal of problem define by proposing a fine-grained distillation (FGD), which adjusts the distribution of Q-SDSA at the upper level to minimize the conditional entropy.

• We propose the QSD-Transformer, achieving energy efficiency via low-bit weights and 1-bit spikes.

- We identify performance degradation in QSD-Transformer due to the SID problem.
- We develop a bi-level optimization strategy: IE-LIF neurons for multi-bit spikes in training and FGD scheme for optimized attention distribution.
- Our method delivers state-of-the-art performance and efficiency on vision tasks, enabling practical deployment of spike-based Transformers on resource-limited platforms.

Experimental Results

> Performance Comparison

> ImageNet classification results

Mathad	Anabitaatuna	Dita	Spike	Time	Param	Power	Acc.
Method	Architecture	Bits	-driven	Step	(\mathbf{M})	(mJ)	(%)
Transformer (Yu et al., 2023)	CAformer*	32-32	Х	N/A	15.1	40.3	79.9
QCFS (Bu et al., 2021)	ResNet-34	32-1	√	256	21.8	-	73.4
MST (Wang et al., 2023)	Swin-T	32-1	✓	128	28.5	-	77.9
SEW-ResNet (Fang et al., 2021)	SEW-ResNet-34	32-1	Х	4	25.6	4.9	67.8
SEW-Resivet (Pally et al., 2021)	SEW-ResNet-152	32-1	X	4	60.2	12.9	69.2
MS PacNat(Hu et al. 2024b)	MS-ResNet-34	32-1	✓	4	21.8	5.1	69.4
MS-ResNet(Hu et al., 2024b)	MS-ResNet-104	32-1	✓	4	77.3	10.2	75.3
Spikformer (Zhou et al., 2023b)	Spikformer-8-512	32-1	Х	4	29.7	11.6	73.4
Spikionner (Zhou et al., 20250)	Spikformer-8-768	32-1	X	4	66.3	21.5	74.8
SD-Transformer (Yao et al., 2023b)	SD-Transformer-8-512	32-1	√	4	29.7	4.5	74.6
SD-Transformer (Tablet al., 20230)	SD-Transformer-8-768	32-1	✓	4	66.3	6.1	76.3
SpikingResformer (Shi et al., 2024)	SpikingResformer-T	32-1	√	4	11.1	4.2	74.3
Spiking Resionner (Sin et al., 2024)	SpikingResformer-L	32-1	\checkmark	4	60.4	9.7	78.7
	SD-Transformer v2-T	32-1	√	4	15.1	16.7	74.1
SD-Transformer v2 (Yao et al., 2023a)	SD-Transformer v2-M	32-1	✓	4	31.3	32.8	77.2
	SD-Transformer v2-L	32-1	✓	4	55.4	52.4	79.7
	SD-Transformer v2-T	4-1	✓	4	1.8	2.5	77.5
QSD-Transformer	SD-Transformer v2-M	4-1	✓	4	3.9	5.7	78.9
	SD-Transformer v2-L	4-1	✓	4	6.8	8.7	80.3

> Coco2017 Object detection results

Method	Architecture	Bits	Spike -driven	Time Step	Param (M)	Power (mJ)	mAP@0.5 (%)
Transformer (Yu et al., 2023) Transformer (Zhu et al., 2020)	CAformer DETR	32-32 32-32	×	N/A N/A	31.2 41.0	890.6 860.2	54.0 57.0
Spiking-Yolo (Kim et al., 2020) Spike Calibration (Li et al., 2022)	ResNet-18 ResNet-18	32-1 32-1	√	3500 512	10.2 17.1	-	25.7 45.3
EMS-SNN (Su et al., 2023) SD-Transformer v2 (Yao et al., 2023a)	EMS-ResNet-18 SD-Transformer v2-M	32-1 32-1	√ ✓	4	26.9 75.0	140.8	50.1 51.2
QSD-Transformer	SD-Transformer v2-T SD-Transformer v2-M	4-1 4-1	✓	4 4	16.9 34.9	45.1 117.2	48.1 57.0

> ADE20K Semantic segmentation results

Method	Architecture	Bits	Spike -driven	Time Step	Param (M)	Power (mJ)	MIoU (%)
Segformer (Xie et al., 2021) DeepLab-V3 (Zhang et al., 2022a)	Segformer DeepLab-V3	32-32 32-32	×	N/A N/A	3.8 68.1	38.9 1240.6	37.4 42.7
SD-Transformer v2 (Yao et al., 2023a)	SD-Transformer v2-M	32-1	✓	4	59.8	183.6	35.3
QSD-Transformer	SD-Transformer v2-T SD-Transformer v2-M	4-1 4-1	✓ ✓	4 4	3.3 9.6	17.5 37.9	39.0 40.5

> Transfer learning results on CIFAR10, CIFAR100, CIFAR10-DVS

	Param	CIFAR10		C	IFAR100	CIF	AR10-DVS
Method	(M)	\overline{T}	Acc. (%)	\overline{T}	Acc. (%)	\overline{T}	Acc. (%)
Spikformer (Zhou et al., 2023b) SpikingResformer (Shi et al., 2024)	29.1 17.3	4 4	97.0 97.4	4 4	83.8 85.9	10	84.8
QSD-Transformer	1.8 6.8	4 4	97.8±0.1 98.4 ±0.2	4 4	86.6±0.3 87.6 ±0.2	10 10	88.8±0.1 89.8 ±0.1

The QSD-Transformer obtains SOTA performance, achieving a harmonious balance between accuracy and power.

> Ablation Study

Architecture	IE-LIF	FGD	Weight Bits	Acc.(%)
	-	-	4	70.0
	✓	-	4	75.8
SD-Transformer v2 (Yao et al., 2023a)	✓	✓	4	<i>77.</i> 5
	✓	✓	3	76.9
	✓	✓	2	75.0
	-	-	4	64.1
	✓	-	4	70.1
Spikformer (Zhou et al., 2023b)	✓	✓	4	75.5
	✓	✓	3	74.1
	✓	✓	2	73.1

Both the proposed IE-LIF neuron and the FGD scheme can improve performance.