Can One Modality Model Synergize Training of Other Modality Models?

Jae-Jun Lee, Sung Whan Yoon

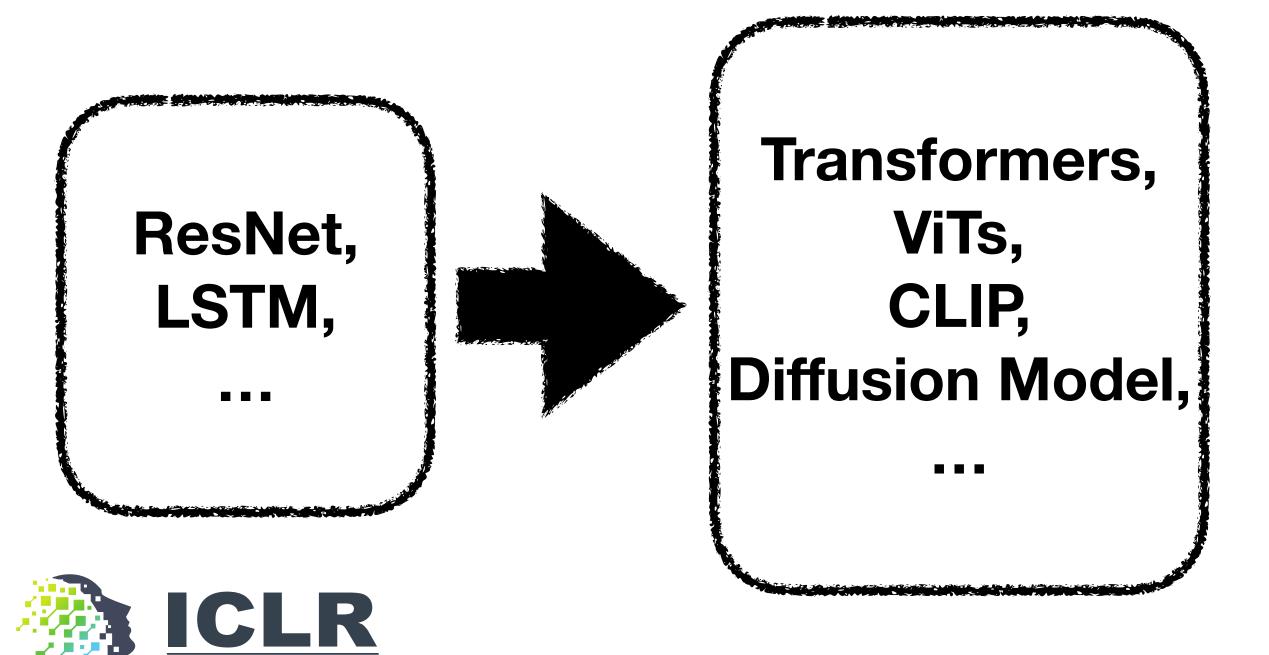
Ulsan National Institute of Science and Technology johnjaejunlee95@unist.ac.kr, shyoon8@unist.ac.kr 25 April, 2025, @ICLR 2025, Singapore

Huge Success of recent Multimodal Learning

Huge Success of recent Multimodal Learning

Rise of Foundation Models (Large Models)

Foundation Models



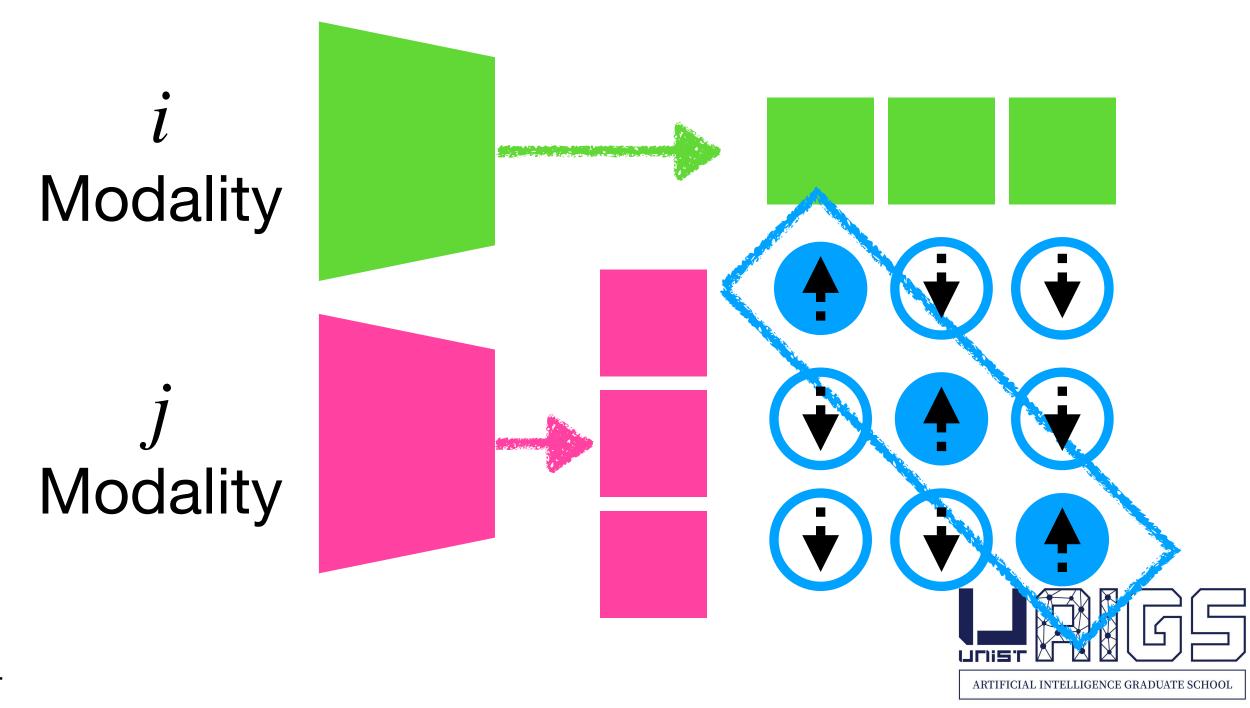
Huge Success of recent Multimodal Learning

- Rise of Foundation Models (Large Models)
- Contrastively leverage information across different modalities.

Foundation Models



Train contrastively across modalities



Problem Formulation - Limitations of recent Multimodal Learning

However, significant limitations remain:

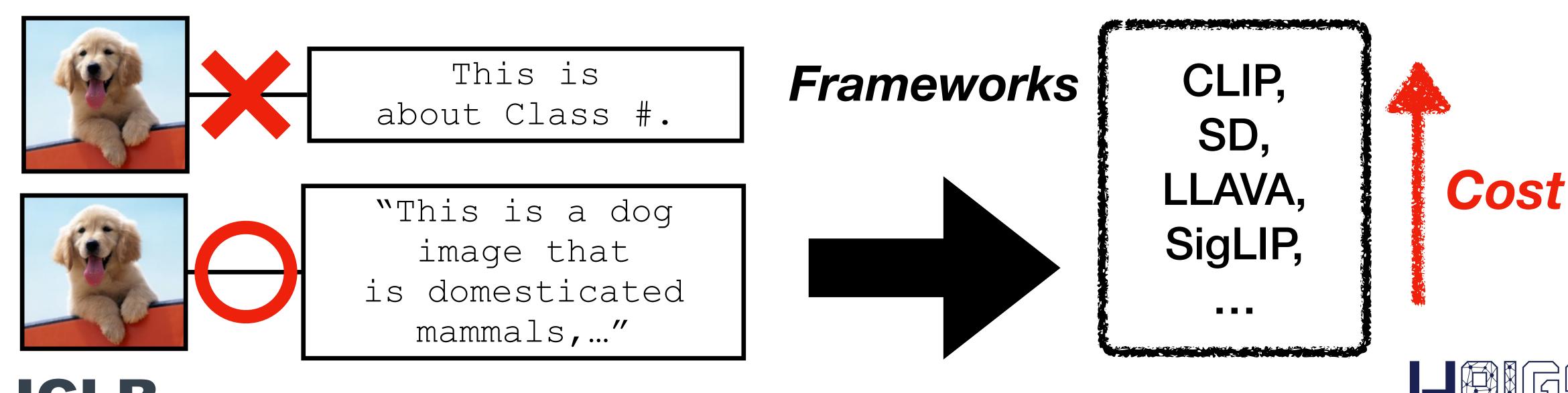
Problem Formulation - Limitations of recent Multimodal Learning

- However, significant limitations remain:
 - Require high-quality data describing each modality sufficiently.



Problem Formulation - Limitations of recent Multimodal Learning

- However, significant limitations remain:
 - Require high-quality data describing each modality sufficiently.
 - Multimodal theoratical aspects focus when paired-datasets are available, where it requires high computational cost.



ARTIFICIAL INTELLIGENCE GRADUATE SCHOOL

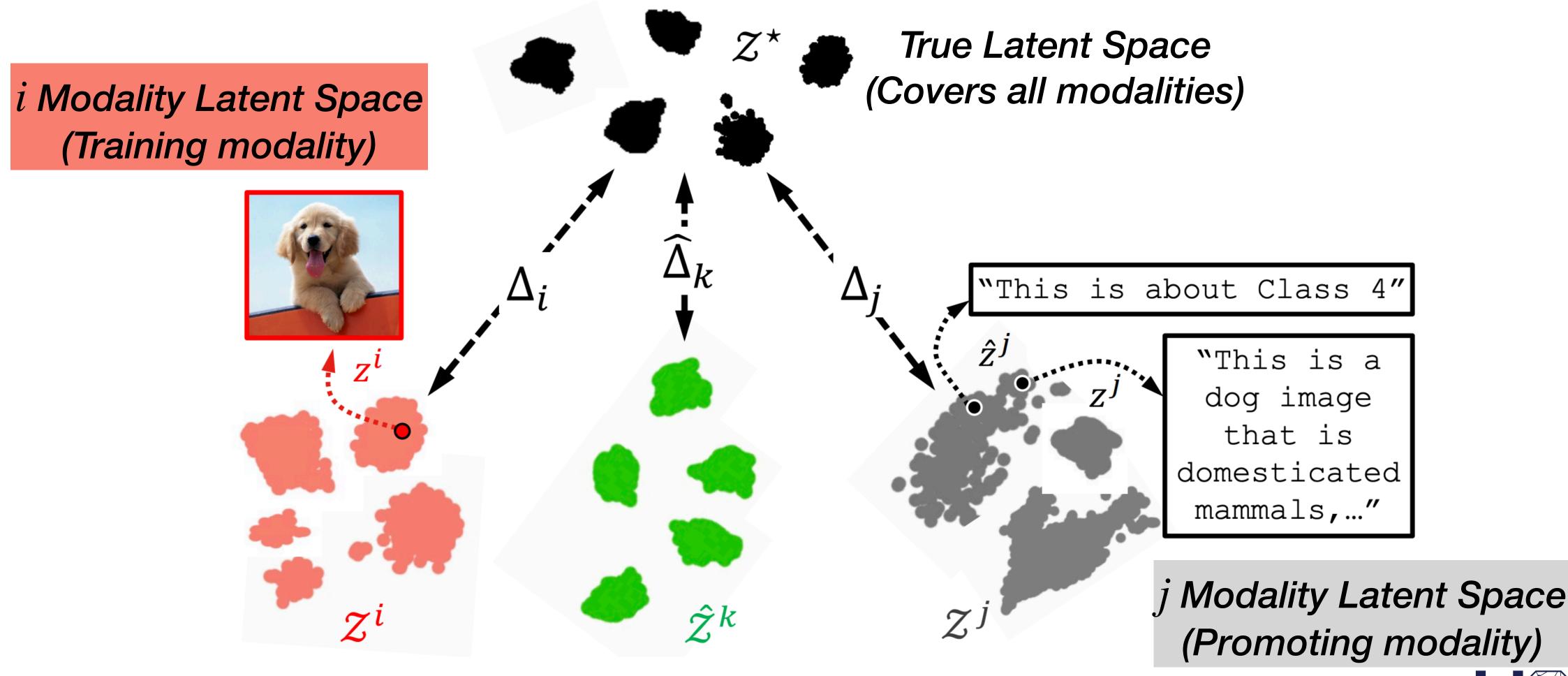
Our Approach: Synergistic Multimodal Learning in 2 Perspectives

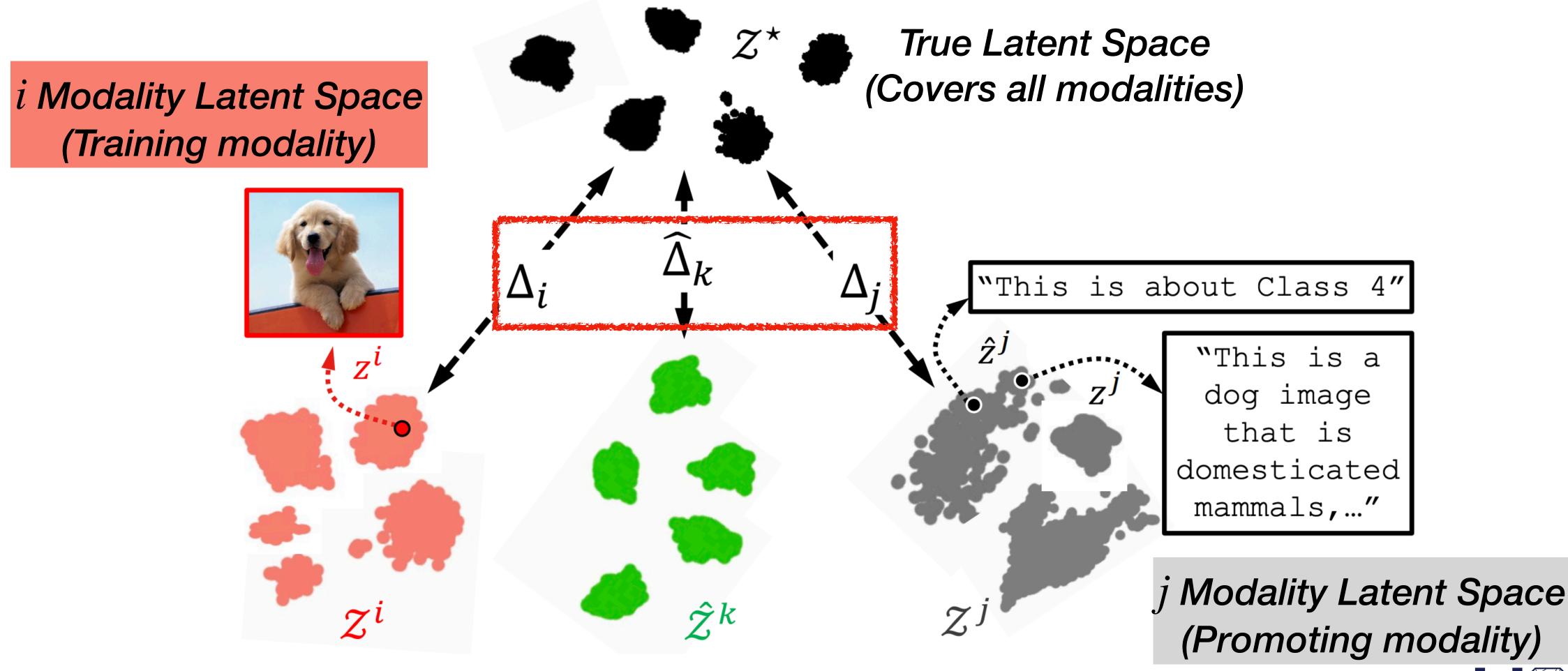
Our Approach: Synergistic Multimodal Learning in 2 Perspectives

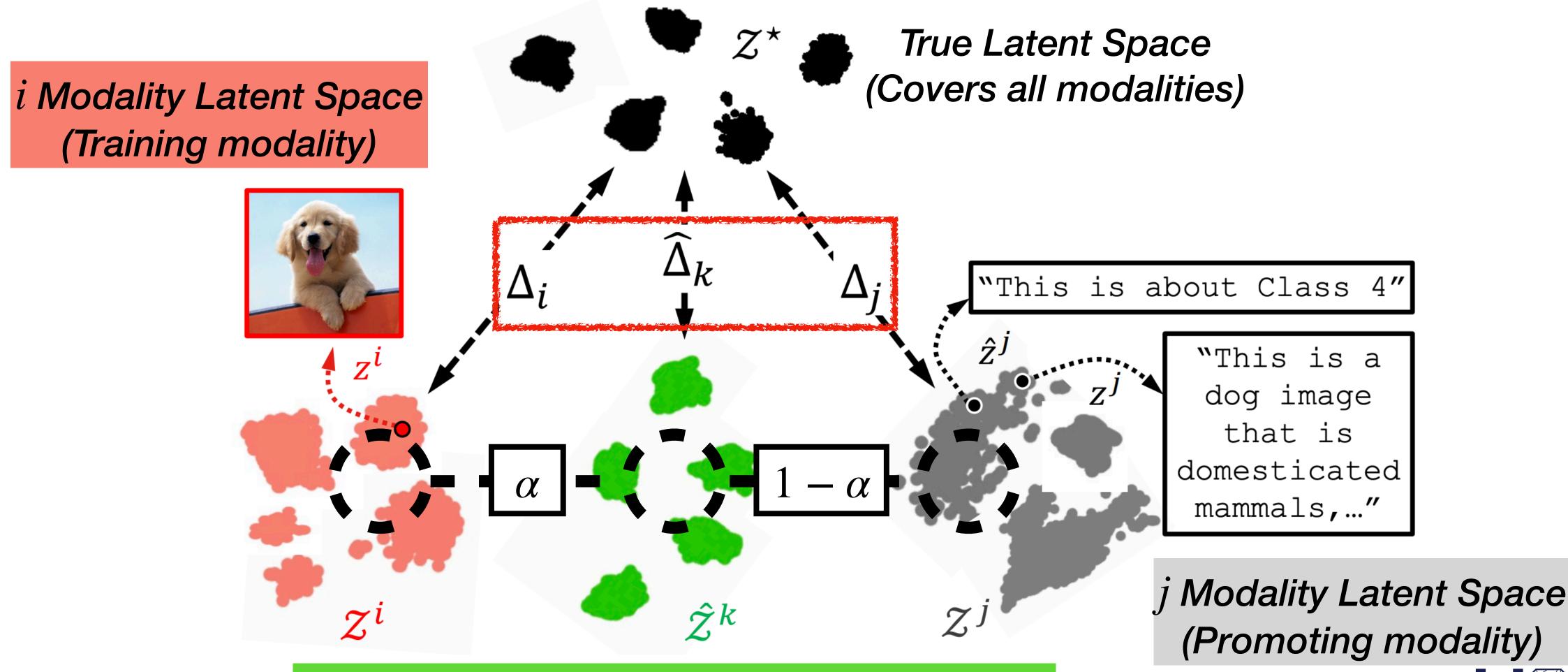
Theoratical Perspective: Derive how one modality can promote the training of other modality mathematically based on 2-Wasserstein distance between distribution of latent features of each modality, where it reveals that it doesn't requires high quality of paired-datasets.

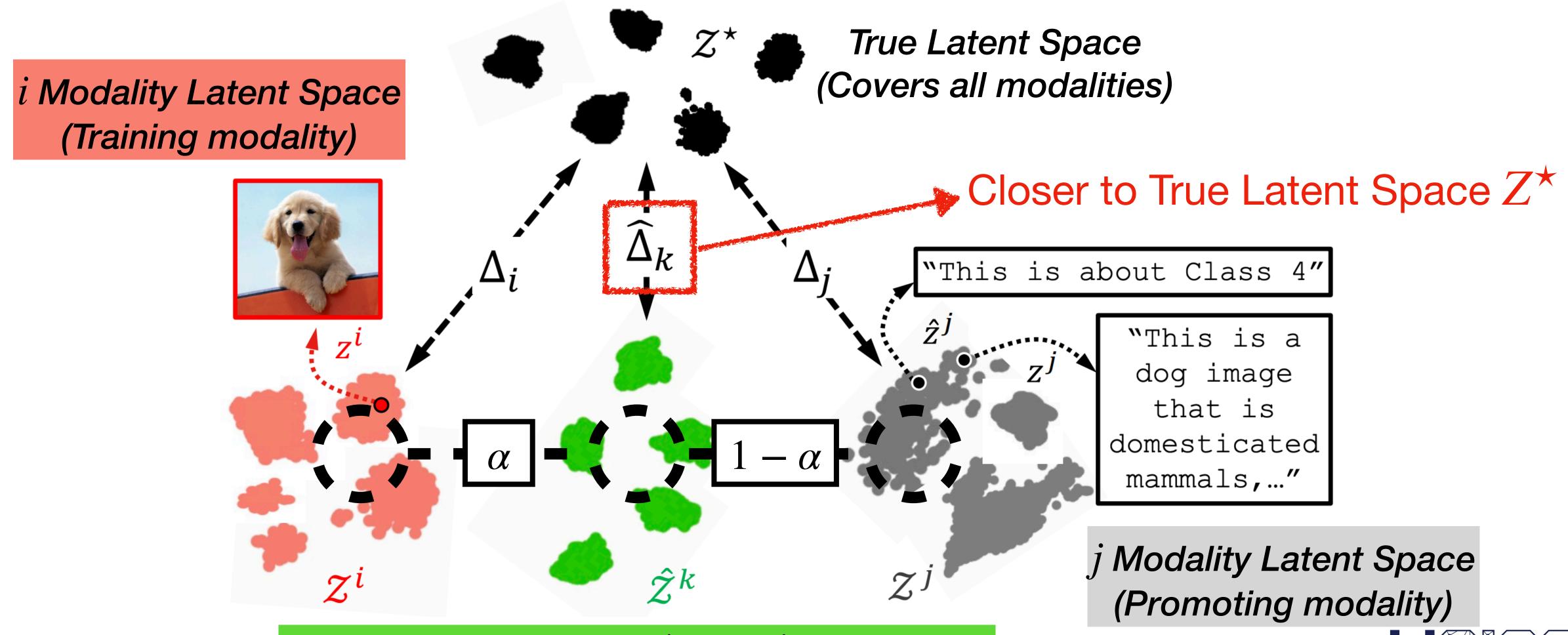
Our Approach: Synergistic Multimodal Learning in 2 Perspectives

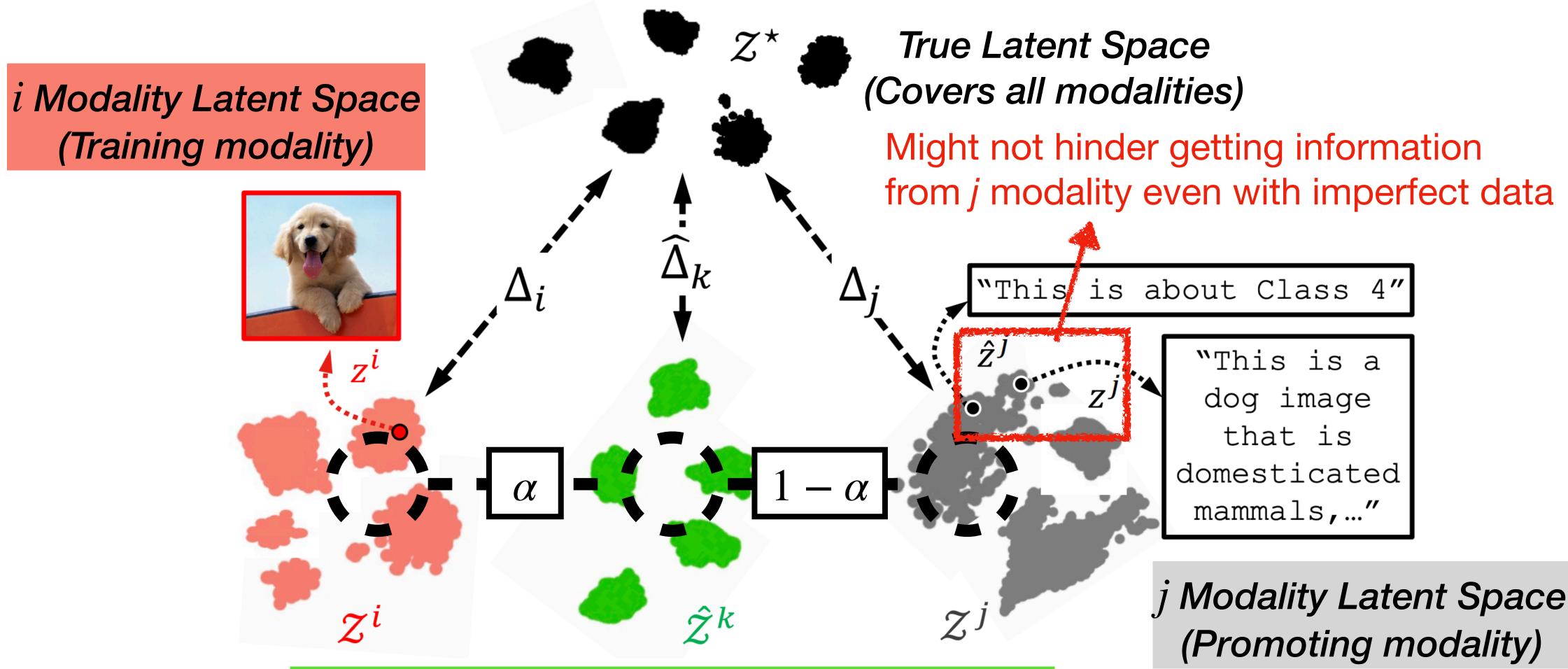
- Theoratical Perspective: Derive how one modality can promote the training of other modality mathematically based on 2-Wasserstein distance between distribution of latent features of each modality, where it reveals that it doesn't requires high quality of paired-datasets.
- *Empirical Perspective*: Demonstrates how a pretrained modality model can aid in training another modality, even with *imperfect supervision between paired datasets*.



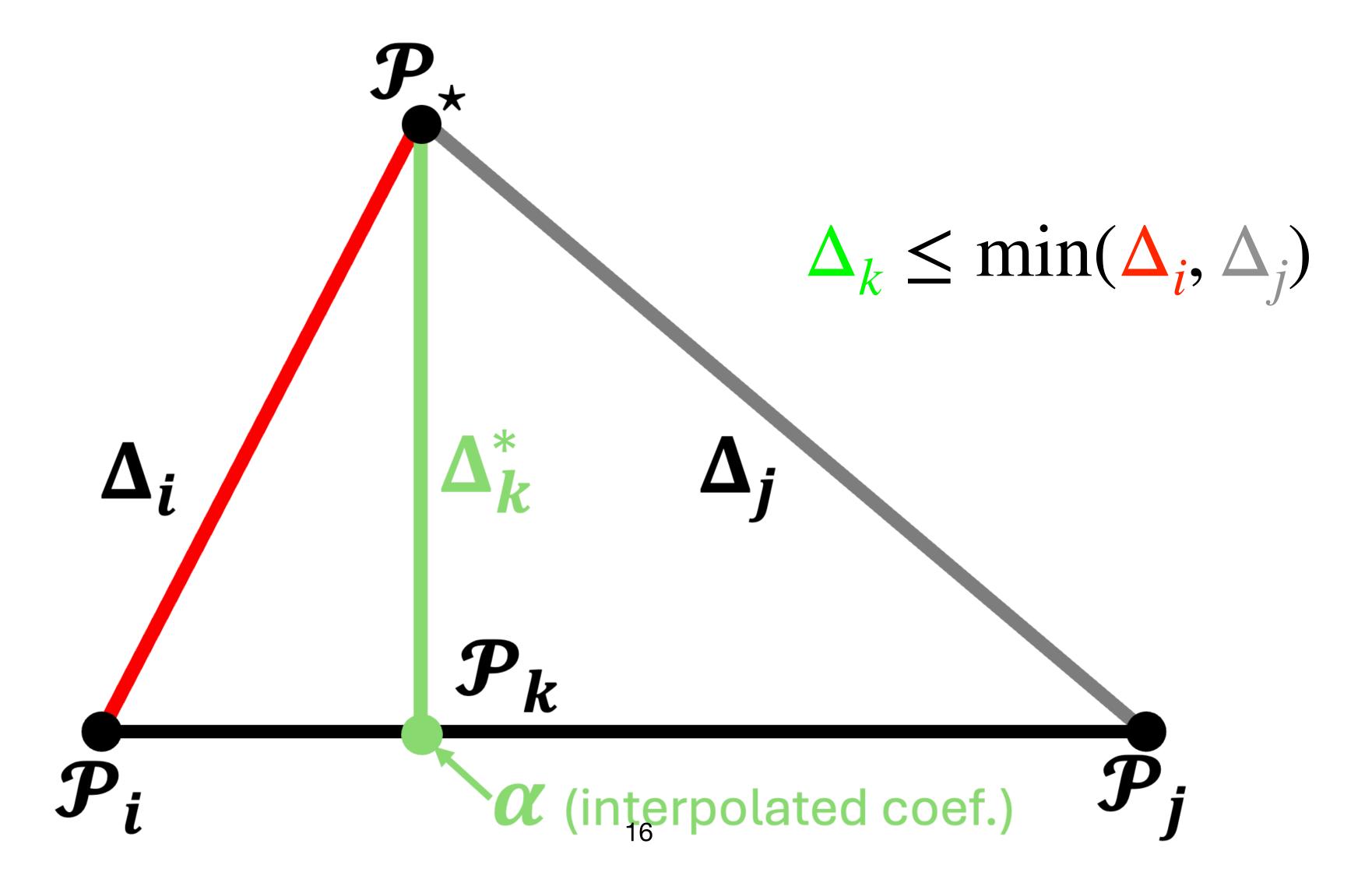








Skeptual Concept based on Our Hypotheses (Easier verison)



Experimental Settings for Synergistic Multimodal Learning

Imperfect Supervision:

- Conducting *imperfectly paired datasets*, where paired data provide only partial or insufficient descriptions of each other.

Experimental Settings for Synergistic Multimodal Learning

- Imperfect Supervision:
 - Conducting *imperfectly paired datasets*, where paired data provide only partial or insufficient descriptions of each other.
 - Ex). [🐩 , "This is about class #."] ⇒ Imperfect (Vision, Text)
- Matching modalities at Latent Feature Space (or Subspace):
 - Each modality is analyzed and compared within the latent feature space, extracted from the each modality model. ⇒ Need new loss functions

Loss Functions

Classification Loss:
$$\mathcal{L}_{cls} = \mathbb{E}_{(\mathbf{x}_m^i, y_m^i) \sim \mathcal{S}^i} \left[\mathcal{L}_{CE} \left(h \circ g(\mathbf{x}_m^i), y_m^i \right) \right]$$

Latent Loss:
$$\mathcal{L}_z = \mathbb{E}_{(\mathbf{x}_m^i, y_m^i, \hat{z}_m^i) \sim \mathcal{S}^i \times \hat{Z}^j} \left[||g(\mathbf{x}_m^i) - \hat{z}_m^i||_2^2 \right]$$

$$\Rightarrow$$
 Total Loss: $\mathcal{L}_{total} = (1 - \alpha)\mathcal{L}_{cls} + \alpha\mathcal{L}_{z}$

Experimental Settings of \hat{z}^{j} (imperfect supervision)

```
\begin{array}{|c|c|c|c|c|c|} \hline \textbf{Datasets \& Cases} & \textbf{Implementation of } \hat{z}_m^j \\ \hline \textbf{ImageNet-1k [L$\to$V$]} & \textbf{[L]} \Rightarrow \textbf{This is about Class $\#.$^{\dagger}} \\ \hline \textbf{IEMOCAP [L$\to$A]} & \textbf{[L]} \Rightarrow \textbf{This is about Emotion $\#.$^{\dagger}} \\ \hline \textbf{IEMOCAP [A$\to$L]} & \textbf{[A]} \Rightarrow \textbf{Add Gaussian Noise: } \xi \sim \mathcal{N}(0,\lambda I)^{\dagger\dagger} \& \textbf{Random Shuffling} \\ \hline \textbf{AVMNIST [V}\to \textbf{A]} & \textbf{[V]} \Rightarrow \textbf{Random Shuffled Image (mismatch paired sets)} \\ \hline \textbf{AVMNIST [A}\to \textbf{V]} & \textbf{[A]} \Rightarrow \textbf{Add Gaussian Noise: } \xi \sim \mathcal{N}(0,\lambda I)^{\dagger\dagger} \& \textbf{Random Shuffling} \\ \hline \end{array}
```

†: # is a random number that does not directly correspond to the actual label. ††: λ is a parameter that controls the variance of the Gaussian noise. We applied $\lambda = 10^{-3}$

Empirical Results: Vision-Langauge

Table 1: Classification results on ImageNet-1K and evaluation benchmarks (OOD and robustness)

Model [L→V]	IN	V2	Rend.	Sketch	A	Style.	C (\psi)
ResNet-50 (reproduced)	77.83	66.20	39.28	27.35	6.44	8.59	66.01
+ BERT (Devlin et al., 2018) + Roberta (Liu et al., 2019)	78.41 78.54	67.10 67.30	40.38 40.92	28.19 28.78	8.47 8.25	9.64 9.19	64.96 65.32
ViT-B/32 (reproduced)	75.04	62.02	40.31	27.34	9.23	16.56	55.45
+ BERT (Devlin et al., 2018) + Roberta (Liu et al., 2019)	76.59 76.75	63.37 64.00	41.28 41.81	28.53 29.50	11.31 11.55	18.11 18.75	53.28 52.95
ViT-B/16 (reproduced)	80.07	68.60	44.72	31.22	24.20	18.81	51.21
+ BERT (Devlin et al., 2018) + Roberta (Liu et al., 2019)	81.62 81.90	70.07 70.55	45.72 45.41	33.13 33.19	25.12 26.89	20.31 19.93	49.27 48.51

Empirical Results: Language-Audio, Vision-Audio

Table 2: Classification results on IEMOCAP and AVMNIST datasets on each cases of $[M_j \to M_i]$.

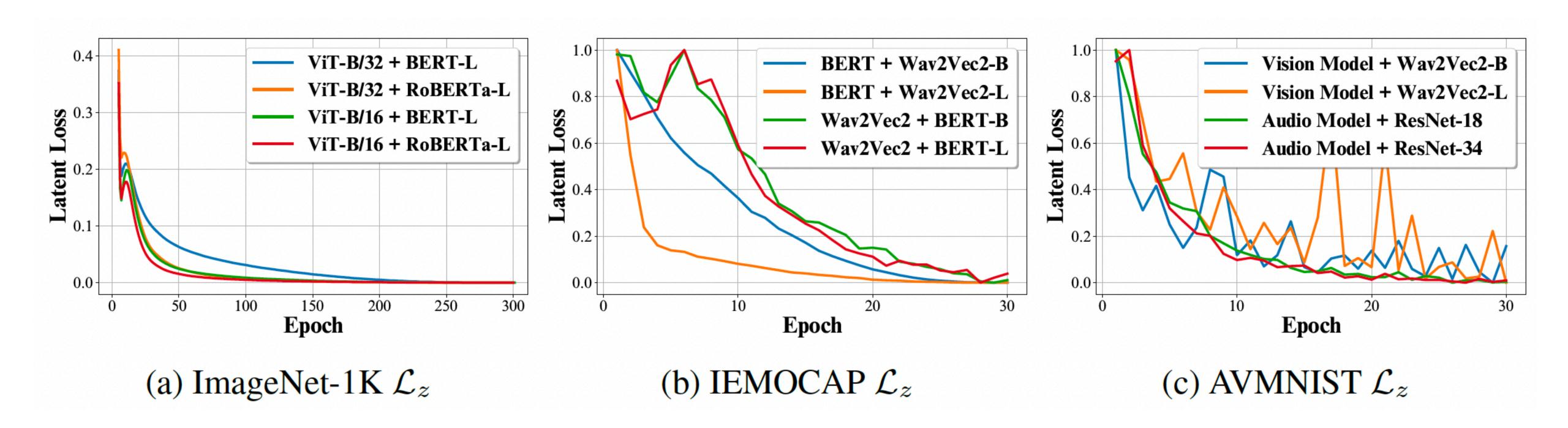
Datasets	Model [L→A]	Accuracy	Model [A→L]	Accuracy
IEMOCAP††	Wav2Vec2 [†] (Ravanelli et al., 2021) + BERT-B (Devlin et al., 2018) + BERT-L (Devlin et al., 2018)	59.46 60.44 61.20	BERT (Devlin et al., 2018) + Wav2Vec2-B (Baevski et al., 2020) + Wav2Vec2-L (Baevski et al., 2020)	55.81 56.49 56.05
Datasets	Model [V→A]	Accuracy	$ Model [A \rightarrow V]^*$	Accuracy
AVMNIST	Audio Model (Li et al., 2023) + ResNet-18 (He et al., 2016) + ResNet-34 (He et al., 2016)	41.28 42.08 42.44	Vision Model (Li et al., 2023) + Wav2Vec2-B (Baevski et al., 2020) + Wav2Vec2-L (Baevski et al., 2020)	65.18 66.37 66.69

^{†:} SpeechBrain (Ravanelli et al., 2021) experimented with 4 out of 6 labels; we used the all labels.

^{*:} Since the audio data in AVMNIST is based on spectrograms, we use the original raw audio data prior to its conversion into spectrogram.

^{††:} Owing to transformer-type model requires numerous data, we fine-tuned the pretrained model.

Convergence of Latent Loss (Magnitude of Losses)



⇒ All cases converges almost to, but not exactly to, zero due to interpolation.

Wasserstein Distance between Paired Modalities

IEMO. [L \rightarrow A] WD		IEMO. [$A \rightarrow L$]		
$W_2(\mathcal{P}_A,\hat{\mathcal{P}}_k)$	0.494	$W_2(\mathcal{P}_L,\hat{\mathcal{P}}_k)$		
$W_2(\hat{\mathcal{P}}_L,\hat{\mathcal{P}}_k)$	0.141	$W_2(\hat{\mathcal{P}}_A,\hat{\mathcal{P}}_k)$		
$W_2(\mathcal{P}_A,\hat{\mathcal{P}}_L)$	0.977	$W_2(\mathcal{P}_L,\hat{\mathcal{P}}_A)$		

AVMN. $[V \rightarrow A]$	WD
$W_2(\mathcal{P}_A,\hat{\mathcal{P}}_k)$	0.025
$W_2(\hat{\mathcal{P}}_V,\hat{\mathcal{P}}_k)$	0.754
$W_2(\mathcal{P}_A,\hat{\mathcal{P}}_V)$	0.790

AVMN. $[A \rightarrow V]$	WD
$W_2(\mathcal{P}_V,\hat{\mathcal{P}}_k)$	0.908
$W_2(\hat{\mathcal{P}}_A,\hat{\mathcal{P}}_k)$	0.502
$W_2(\mathcal{P}_V,\hat{\mathcal{P}}_A)$	0.954

Interpolated representation are both smaller than WD between modalities

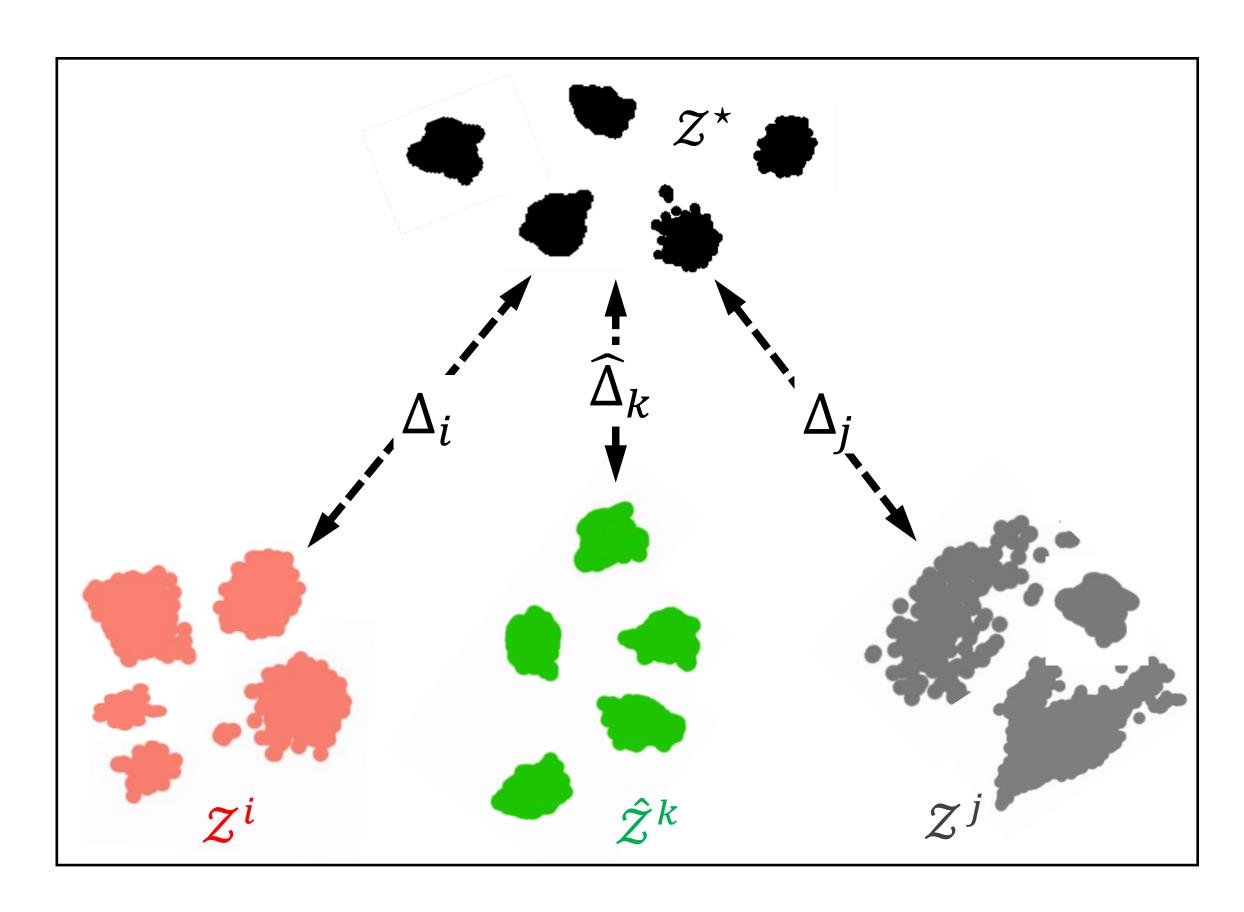
 \mathbf{WD}

0.965

0.460

1.005

Wasserstein Distance between Paired-Modalities



Our Hypothesis

Our Results (t-SNE Visualizations)

Ablation Studies: Usage of Paired Supervision z^j vs. \hat{z}^j

Model [L→V]	$\hat{oldsymbol{z}}^{oldsymbol{j}}$	$m{z^j}$
ResNet-50 + RoBERTa	78.54	78.61 (+0.07)
ViT-B/32 + RoBERTa	76.75	76.99 (+0.24)
ViT-B/16 + RoBERTa	81.90	82.54 (+0.64)

Slightly improved but minimal gains

5. Conclusion

- Our paper demonstrate that a modality can enhance learning in another, even with weakly related or mismatched supervision,
- Both theoretical and empirical frameworks support this finding, reinforcing its validity.
- Exploring more complex multimodal settings, incorporating additional modalities, and scaling to larger models for further advancements.

Thank you!

