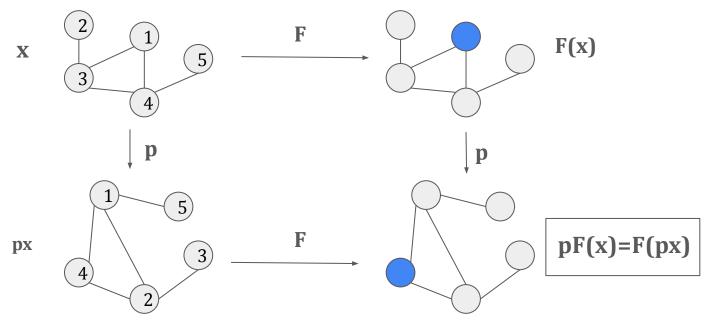


Revisiting Multi-Permutation Equivariance Through the Lens of Irreducible Representations

Yonatan Sverdlov*, Ido Springer*, Nadav Dym

Problem Setting: Finding Permutation Equivariant linear Layers



Problem Setting: Finding Permutation Equivariant linear Layers

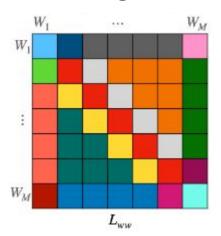
• Find all linear layers F s.t. F(px) = pF(x) for any permutation $p \in G$

Problem Setting: Finding Permutation Equivariant Layers

- Find linear layers F s.t. F(px) = pF(x) for any permutation $p \in G$
- A crucial architecture component for geometric domains
 - such as sets, graphs and weight spaces.

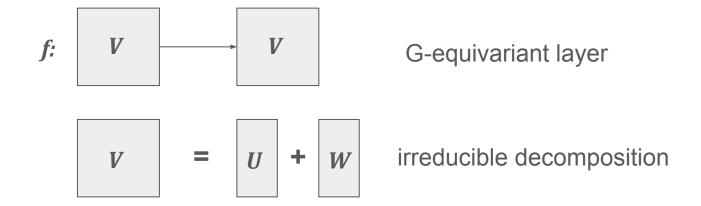
Problem Setting: Finding Permutation Equivariant Layers

- Find linear layers F s.t. F(px) = pF(x) for any permutation $p \in G$
- Traditionally this was done by finding explicit parameter sharing.
- However explicit parameter sharing tend to be tedious.

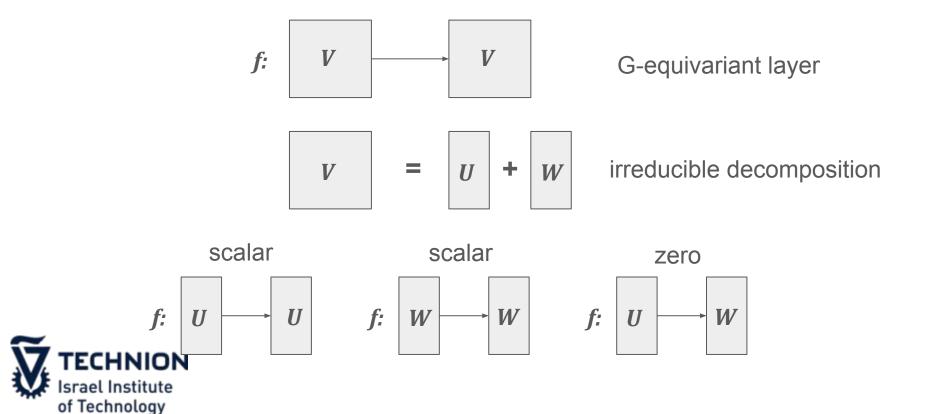


Irreducible Representations and Schur's Lemma

Irreducible Representations and Schur's Lemma



Irreducible Representations and Schur's Lemma



Re-deriving Permutation Equivariant Layers

- We re-derive known equivariant characterizations using irreducible decompositions and Schur's lemma
- Case studies:
 - DeepSets (Zaheer et al.)
 - Graph Invariant Networks (Maron et al.)
 - Deep Weight Spaces Networks (Navon et al.)
 - Wreath-equivariant layers

Case Study: DeepSets

- DeepSets (Zaheer et al. 2017): S_n acting on R^n.
- two irreps: scalars and sum to zero
- decompose x in R^n to x=x_bar*1n + (x-x_bar*1n)
- Now we get Tx = a*x_bar*1n + b*(x-x_bar*1n) by Schur
- this is exactly the original result of DeepSets!
- We do the same for IGN and DWS

Wreath-Equivariant Layers

- Sets of unaligned symmetric elements (v₁,...,v_k)
- Equivariance with respect to the joint action of:
 - \circ k-tuple of group elements $(g_1,...,g_k)$ on each coordinate independently
 - ∘ a permutation $\tau \in S_{\nu}$ of the k-tuple
- This corresponds to the action of the wreath product G≀S_k on V^k
- We seek for wreath equivariant linear layers
- Applications: alignment problems, hierarchical structures

Full Characterization of Wreath-Equivariant Layers

Theorem 5.2. Let V be a real representation of a finite group G, and let e_1, \ldots, e_s be a basis to the subspace V_{fixed} . Let $\langle \cdot, \cdot \rangle$ be a G invariant inner product on V. Then every linear equivariant map $L: V^k \to V^k$ is of the form

$$L(v_1, \dots, v_k) = \sum_{i,j=1}^s a_{ij} \left(\sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j, \dots, \sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j \right) + \left(\hat{L}(v_1), \dots, \hat{L}(v_k) \right)$$
(9)

where $\hat{L}: \mathcal{V} \to \mathcal{V}$ is a linear equivariant map, and a_{ij} are real numbers. Conversely, every linear mapping of the form defined in equation 9 is equivariant.

Full Characterization of Wreath-Equivariant Layers

Theorem 5.2. Let V be a real representation of a finite group G, and let e_1, \ldots, e_s be a basis to the subspace V_{fixed} . Let $\langle \cdot, \cdot \rangle$ be a G invariant inner product on V. Then every linear equivariant map $L: V^k \to V^k$ is of the form

$$L(v_1, \dots, v_k) = \sum_{i,j=1}^s a_{ij} \left(\sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j, \dots, \sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j \right) + \left(\hat{L}(v_1), \dots, \hat{L}(v_k) \right)$$
(9)

where $\hat{L}: \mathcal{V} \to \mathcal{V}$ is a linear equivariant map, and a_{ij} are real numbers. Conversely, every linear mapping of the form defined in equation 9 is equivariant.

Full Characterization of Wreath-Equivariant Layers

Theorem 5.2. Let V be a real representation of a finite group G, and let e_1, \ldots, e_s be a basis to the subspace V_{fixed} . Let $\langle \cdot, \cdot \rangle$ be a G invariant inner product on V. Then every linear equivariant map $L: V^k \to V^k$ is of the form

$$L(v_1, \dots, v_k) = \sum_{i,j=1}^s a_{ij} \left(\sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j, \dots, \sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j \right) + \left(\hat{L}(v_1), \dots, \hat{L}(v_k) \right)$$

$$\hat{L}(v_1, \dots, v_k) = \sum_{i,j=1}^s a_{ij} \left(\sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j, \dots, \sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j \right) + \left(\hat{L}(v_1), \dots, \hat{L}(v_k) \right)$$

$$\hat{L}(v_1, \dots, v_k) = \sum_{i,j=1}^s a_{ij} \left(\sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j, \dots, \sum_{\ell=1}^k \langle v_\ell, e_i \rangle e_j \right) + \left(\hat{L}(v_1), \dots, \hat{L}(v_k) \right)$$

where $\hat{L}: \mathcal{V} \to \mathcal{V}$ is a linear equivariant map, and a_{ij} are real numbers. Conversely, every linear mapping of the form defined in equation 9 is equivariant.

additional **s**² non-siamese layers!

s = num. of trivial irreps

Siamese layers

Experiments: Graph Anomaly Detection

Find anomalous graph within **k** graphs with **n** nodes each.

Model/Noise	$\eta = 0.0$	$\eta = 0.1$
Siamese	10%	10%
DSS	97.5%	92%
SchurNet (Ours)	100%	97.0%

Table 1: Performance comparison of models at different noise levels (η) .

Non-siamese layers are crucial!

Experiments: Wasserstein Distance Computation

Learning Wasserstein distances is a $S_n \ S_2$ invariant task.

Dataset	Input		NProductNet
noisy-sphere-3	[100, 300]	0.0389	0.046
	[300, 500]	0.1026	<u>0.158</u>
noisy-sphere-6	[100, 300]	0.0217	0.015
	[300, 500]	0.0795	0.049
uniform	256	0.0974	0.097
	[200, 300]	0.1043	<u>0.1089</u>
ModelNet-small	[20, 200]	0.0623	0.084
	[300, 500]	0.0738	0.111
ModelNet-large	2048	0.0468	<u>0.140</u>
	[1800, 2000]	0.0551	<u>0.162</u>
RNAseq	[20, 200]	0.0123	0.012
	[300, 500]	0.0334	0.292

Table 2: Comparison of SchurNet and NProductNet.

Experiments: Weight Space Alignment

- v₁, v₂ are elements in weight space
- Find the group element that optimally aligns v_1 and v_2 .

Model	MNIST		CIFAR10	
	Acc(↓)	Loss (\lambda)	Acc(↓)	Loss (\dagger)
SchurNet (Ours)	1.25e-5	0.251346	0.0	1.7822
Siamese	1.5e-5	0.262913	1.0e-4	1.7876

Table 3: Comparison of SchurNet and Siamese models on MNIST and CIFAR10.

Non-siamese layers improve error rates.

Thanks!

arXiv: https://arxiv.org/abs/2410.06665

Code: https://github.com/yonatansverdlov/SchurNet

Poster: Fri 25 Apr 3PM+08 - 5:30PM+08

