

HyperFace: Generating Synthetic Face Recognition Datasets by Exploring Face Embedding Hypersphere

Hatef Otroshi Shahreza^{1,2}, Sébastien Marcel^{1,3}

¹ Idiap Research Institute, Martigny, Switzerland ² École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ³ Université de Lausanne (UNIL), Lausanne, Switzerland

- Training face recognition models require large-scale datasets.
 - different identities and several samples per identity

- Training face recognition models require large-scale datasets.
 - different identities and several samples per identity
- Existing real face recognition datasets are collected by crawling internet without individual's consent:
 e.g., MS-Celeb-1M, WebFace260M, etc.
 - Therefore, existing face recognition datasets have privacy and legal concerns.
 - Given such concerns some of these datasets are retracted. eg: MS-Celeb-1M

- Training face recognition models require large-scale datasets.
 - different identities and several samples per identity
- Existing real face recognition datasets are collected by crawling internet without individual's consent:
 e.g., MS-Celeb-1M, WebFace260M, etc.
 - Therefore, existing face recognition datasets have privacy and legal concerns.
 - Given such concerns some of these datasets are retracted. eg: MS-Celeb-1M

Solutions:

Use generative models to generate synthetic datasets for training face recognition models

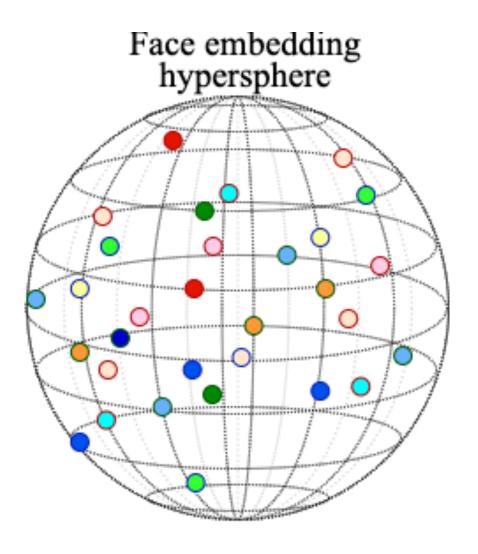
• For generating synthetic face recognition dataset, we need to generate inter-class and intra-class variations

- For generating synthetic face recognition dataset, we need to generate inter-class and intra-class variations
 - Increasing intra-class variations can be achieved by conditioning generative models

- For generating synthetic face recognition dataset, we need to generate inter-class and intra-class variations
 - Increasing intra-class variations can be achieved by conditioning generative models
 - But how we can increase inter-class variations?

Problem Formulation

- Identity Hypersphere
 - Face Recognition model $F: I \rightarrow X$
 - we can assume that the extracted identity features cover a unit hypersphere (otherwise we normalise it)



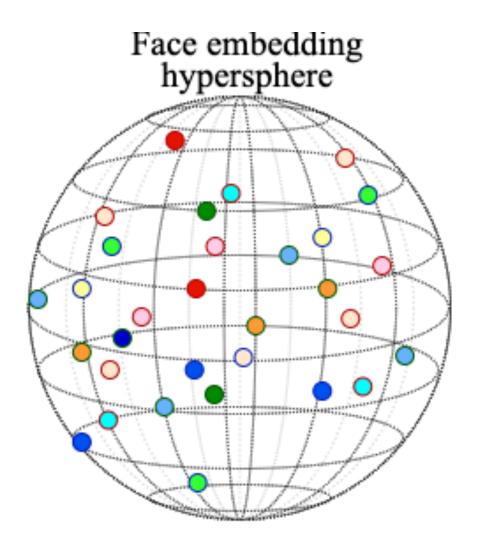
Problem Formulation

Identity Hypersphere

- Face Recognition model $F: I \rightarrow X$
- we can assume that the extracted identity features cover a unit hypersphere (otherwise we normalise it)

Representing Synthetic Dataset on the Identity Hypersphere

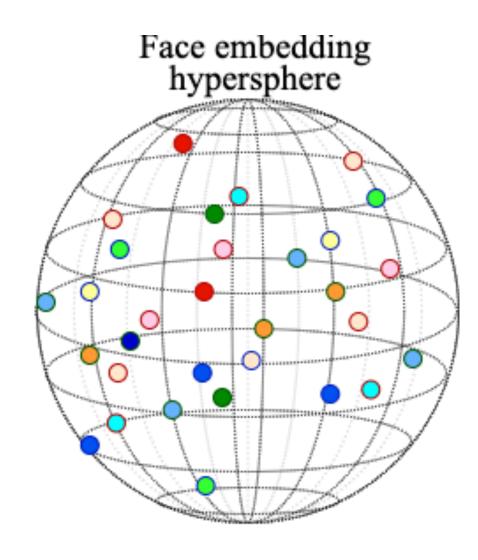
• we can extract embeddings from all images in the dataset and represent the dataset on the surface of a unit hypersphere $\{x_{ref,i}\}_{i=1}^{n_{id}}$



Problem Formulation

Identity Hypersphere

- Face Recognition model $F: I \rightarrow X$
- we can assume that the extracted identity features cover a unit hypersphere (otherwise we normalise it)
- Representing Synthetic Dataset on the Identity Hypersphere
 - we can extract embeddings from all images in the dataset and represent the dataset on the surface of a unit hypersphere $\{x_{ref,i}\}_{i=1}^{n_{id}}$
- How should reference embeddings cover the identity hypersphere?



- Since we would like to have a high inter-class variation in the generated dataset, we can say that we need to **maximize** the distances between reference embeddings $\{x_{ref,i}\}_{i=1}^{n_{id}}$
- In other words, we need to solve the following optimization problem:

$$\max \quad \min_{\{\boldsymbol{x}_{\text{ref}}\}, i \neq j} d(\boldsymbol{x}_{\text{ref},i}, \boldsymbol{x}_{\text{ref},j}) \quad \text{ subject to } ||\boldsymbol{x}_{\text{ref},k}||_2 = 1, \forall k \in \{1,...,n_{\text{id}}\}$$

- Regularization:
 - The manifold of embeddings does not necessarily cover the whole surface of the hypersphere.

Regularization:

- The manifold of embeddings does not necessarily cover the whole surface of the hypersphere.
- We need to add a regularization term to our optimization problem that tends to keep the reference embeddings on the manifold

Regularization:

- The manifold of embeddings does not necessarily cover the whole surface of the hypersphere.
- We need to add a regularization term to our optimization problem that tends to keep the reference embeddings on the manifold
- We consider a set of face images (we call it a *gallery*) and extract their embeddings. We use these embeddings to **represent the embedding manifold**. Therefore, as a **regularization** term, we try to minimize the distance of points with the gallery:

$$\min \quad \max_{\{\boldsymbol{x}_{\text{ref}}\}, i \neq j} -d(\boldsymbol{x}_{\text{ref},i}, \boldsymbol{x}_{\text{ref},j}) + \alpha \underbrace{\frac{1}{n_{\text{id}}} \sum_{k=1}^{n_{\text{id}}} \min_{\{\boldsymbol{x}_g\}_{g=1}^{n_{\text{gallery}}}} d(\boldsymbol{x}_{\text{ref},k}, \boldsymbol{x}_g);}_{\text{regularization}};$$

$$\text{subject to} \quad ||\boldsymbol{x}_{\text{ref},k}||_2 = 1, \forall k \in \{1, ..., n_{\text{id}}\},$$

Regularization:

- The manifold of embeddings does not necessarily cover the whole surface of the hypersphere.
- We need to add a regularization term to our optimization problem that tends to keep the reference embeddings on the manifold
- We consider a set of face images (we call it a *gallery*) and extract their embeddings. We use these embeddings to **represent the embedding manifold**. Therefore, as a **regularization** term, we try to minimize the distance of points with the gallery:

$$\min \quad \max_{\{\boldsymbol{x}_{\text{ref}}\}, i \neq j} -d(\boldsymbol{x}_{\text{ref},i}, \boldsymbol{x}_{\text{ref},j}) + \alpha \underbrace{\frac{1}{n_{\text{id}}} \sum_{k=1}^{n_{\text{id}}} \min_{\{\boldsymbol{x}_g\}_{g=1}^{n_{\text{gallery}}}} d(\boldsymbol{x}_{\text{ref},k}, \boldsymbol{x}_g);}_{\text{regularization}}$$

$$\text{subject to} \quad ||\boldsymbol{x}_{\text{ref},k}||_2 = 1, \forall k \in \{1, ..., n_{\text{id}}\},$$

Note: The gallery can be from synthetic images.

Algorithm 1 HyperFace Optimization for Finding Reference Embeddings

```
1: Inputs: \lambda: learning rate, n_{\text{itr}}: number of iterations, \{\boldsymbol{x}_g\}_{g=1}^{n_{\text{gallery}}}: embeddings of a gallery of face images, \alpha: hyperparameter (contribution of regularization).

3: Output: \boldsymbol{X}_{\text{ref}} = \{\boldsymbol{x}_{\text{ref},i}\}_{i=1}^{n_{\text{id}}}: optimized reference embeddings.

4: Procedure:

5: Initialize reference embeddings \{\boldsymbol{x}_{\text{ref},i}\}_{i=1}^{n_{\text{id}}}

6: For n=1,...,n_{\text{itr}} do

7: Find \boldsymbol{x}_{\text{ref},i}, \boldsymbol{x}_{\text{ref},j} \in \boldsymbol{X}_{\text{ref}} which have minimum distance d(\boldsymbol{x}_{\text{ref},i}, \boldsymbol{x}_{\text{ref},j})

8: Reg \leftarrow \frac{1}{n_{\text{id}}} \sum_{k=1}^{n_{\text{id}}} \min_{\{\boldsymbol{x}_g\}_{\text{gallery}}} d(\boldsymbol{x}_{\text{ref},k}, \boldsymbol{x}_g) \Rightarrow Calculate the regularization term 9: \cot \leftarrow -d(\boldsymbol{x}_{\text{ref},i}, \boldsymbol{x}_{\text{ref},j})

10: \boldsymbol{X}_{\text{ref}} \leftarrow \boldsymbol{X}_{\text{ref}} - \operatorname{Adam}(\nabla \cot \lambda)

11: \boldsymbol{X}_{\text{ref}} \leftarrow \text{normalize}(\boldsymbol{X}_{\text{ref}}) \Rightarrow To ensure that resulting embeddings \boldsymbol{X}_{\text{ref}} remain on the hypersphere. 12: End For 13: End Procedure
```

Image Generation

• We use a (conditional) diffusion model G which can generate face image $m{I} = G(m{x}_{\mathrm{ref}}, m{z})$ from reference embedding $m{x}_{\mathrm{ref}}$

Image Generation

- We use a (conditional) diffusion model G which can generate face image $I = G(x_{ref}, z)$ from reference embedding x_{ref}
- By changing noise z, we can generate different samples per identity.

Image Generation

- We use a (conditional) diffusion model G which can generate face image $I = G(x_{\rm ref}, z)$ from reference embedding $x_{\rm ref}$
- By changing noise z, we can generate different samples per identity.
- Moreover, we can also add small noise on the reference embedding and generate different images:

$$oldsymbol{I} = G(rac{oldsymbol{x}_{ ext{ref}} + eta oldsymbol{v}}{||oldsymbol{x}_{ ext{ref}} + eta oldsymbol{v}||_2}, oldsymbol{z}), \quad oldsymbol{v} \sim \mathcal{N}(0, \mathbb{I}^{n_{\mathcal{X}}}), oldsymbol{z} \sim \mathcal{N}(0, \mathbb{I}^{ ext{DM}})$$

Evaluation

• To evaluate our approach, we use the generated dataset to **train a face recognition model** and compare with face recognition model trained with similar configuration using existing synthetic datasets. Then, we benchmark trained face recognition model for each synthetic dataset:

Evaluation

 To evaluate our approach, we use the generated dataset to train a face recognition model and compare with face recognition model trained with similar configuration using existing synthetic datasets. Then, we benchmark trained face recognition model for each synthetic dataset:

Dataset name	# IDs	# Images	LFW	CPLFW	CALFW	CFP	AgeDB
SynFace (Qiu et al., 2021)	10'000	999'994	86.57	65.10	70.08	66.79	59.13
SFace (Boutros et al., 2022)	10'572	1'885'877	93.65	74.90	80.97	75.36	70.32
Syn-Multi-PIE (Colbois et al., 2021)	10'000	180'000	78.72	60.22	61.83	60.84	54.05
IDnet (Kolf et al., 2023)	10'577	1'057'200	84.48	68.12	71.42	68.93	62.63
ExFaceGAN (Boutros et al., 2023b)	10'000	599'944	85.98	66.97	70.00	66.96	57.37
GANDiffFace (Melzi et al., 2023)	10'080	543'893	94.35	76.15	79.90	78.99	69.82
Langevin-Dispersion (Geissbühler et al., 2024)	10'000	650'000	94.38	65.75	86.03	65.51	77.30
Langevin-DisCo (Geissbühler et al., 2024)	10'000	650'000	97.07	76.73	89.05	79.56	83.38
DigiFace-1M (Bae et al., 2023)	109'999	1'219'995	90.68	72.55	73.75	79.43	68.43
IDiff-Face (Uniform) (Boutros et al., 2023a)	10'049	502'450	98.18	80.87	90.82	82.96	85.50
IDiff-Face (Two-Stage) (Boutros et al., 2023a)	10'050	502'500	98.00	77.77	88.55	82.57	82.35
DCFace (Kim et al., 2023)	10'000	500'000	98.35	83.12	91.70	88.43	89.50
HyperFace [ours]	10'000	500'000	98.50	84.23	89.40	88.83	86.53
CASIA-WebFace (Yi et al., 2014)	10'572	490'623	99.42	90.02	93.43	94.97	94.32

Scaling Dataset Generation

• Complexity: The HyperFace optimization (Algorithm 1) considers all pairs of reference points in the hypersphere and maximizes their distances. Therefore, the optimization considers all pairs of points and has quadratic complexity!

$n_{ m id}$	HyperFace Optimization Runtime
10k	6 hours
20k	11 hours
30k	23 hours
50k	84 hours

Scaling Dataset Generation

• Complexity: The HyperFace optimization (Algorithm 1) considers all pairs of reference points in the hypersphere and maximizes their distances. Therefore, the optimization considers all pairs of points and has quadratic complexity!

$n_{ m id}$	HyperFace Optimization Runtime
10k	6 hours
20k	11 hours
30k	23 hours
50k	84 hours

• To reduce complexity, we propose HyperFace Stochastic Optimization, where in each iteration we randomly select a mini-batch of b points. This will lead to constant complexity wrt number of identities and quadratic complexity wrt mini-batch size.

Scaling Dataset Generation

• Complexity: The HyperFace optimization (Algorithm 1) considers all pairs of reference points in the hypersphere and maximizes their distances. Therefore, the optimization considers all pairs of points and has quadratic complexity!

$n_{ m id}$	HyperFace Optimization Runtime
10k	6 hours
20k	11 hours
30k	23 hours
50k	84 hours

To reduce complexity, we propose HyperFace Stochastic Optimization, where in each iteration we randomly select a
mini-batch of b points. This will lead to constant complexity wrt number of identities and quadratic complexity wrt
mini-batch size.

Batch Size (b)	# ID (n_{id})	HyperFace Stochastic Optimization Runtime
	30k	0.4 hours
1,000	50k	0.5 hours
	100k	0.5 hours
5,000	30k	2.2 hours
	50k	2.2 hours
	100k	2.2 hours

HyperFace Stochastic Optimization

Algorithm 2 HyperFace Stochastic Optimization for Finding Reference Embeddings

```
1: Inputs: \lambda: learning rate, n_{\text{itr}}: number of iterations, \{x_g\}_{g=1}^{n_{\text{gallery}}}: embeddings of a gallery of face images,
                     \alpha: hyperparameter (contribution of regularization), b: size of mini-batch.
 3: Output: X_{\text{ref}} = \{x_{\text{ref},i}\}_{i=1}^{n_{\text{id}}}: optimized reference embeddings.
 4: Procedure:
          Initialize reference embeddings X_{\text{ref}} = \{x_{\text{ref},i}\}_{i=1}^{n_{\text{id}}}
         For n = 1, ..., n_{\text{itr}} do
             Sample a random mini-batch B \subset X_{\text{ref}} of size b
                                                                                                                        Sampling a random mini-batch
             Find x_{\text{ref},i}, x_{\text{ref},j} \in B which have minimum distance d(x_{\text{ref},i}, x_{\text{ref},j})
             \operatorname{Reg} \leftarrow \frac{1}{b} \sum_{k=1}^{b} \min_{\{\boldsymbol{x}_g\}_{\text{gallery}}} d(\boldsymbol{x}_{\text{ref},k}, \boldsymbol{x}_g)

    Calculate the regularization term

             \operatorname{cost} \leftarrow -d(\boldsymbol{x}_{\operatorname{ref},i}, \boldsymbol{x}_{\operatorname{ref},j})
             B \leftarrow B - \operatorname{Adam}(\nabla \operatorname{cost}, \lambda)
             B \leftarrow \text{normalize}(B)
                                                                ▶ To ensure that resulting embeddings B remain on the hypersphere.
              Update B in X_{ref}
13:
14:
          End For
15: End Procedure
```

HyperFace Stochastic Optimization

• Ablation study on the effect of number of batch size in HyperFace stochastic optimization (Algorithm 2)

Batch Size	LFW	CPLFW	CALFW	CFP	AgeDB
1,000 (mini-batch)	98.28	85.23	91.05	91.86	89.37
5,000 (mini-batch)	98.62	84.98	90.73	90.41	88.97
30,000 (full-batch)	98.38	85.07	90.88	91.57	89.60

Thanks for your attention!

[Paper]

[Project Page]

