RANKSHAP

SHAPLEY VALUE BASED FEATURE ATTRIBUTIONS FOR LEARNING TO BANK

Tanya Chowdhury, Yair Zick, James Allan

University of Massachusetts Amherst

Feature Attribution Methods for Ranking

- Popular methods designed for classification/regression; limited focus on ranking.
- 2 Understanding ordering in search engines/rec systems critical for :
 - ▶ Building user trust and ensuring fairness.
 - ▶ Verifying model functionality.

Ranking Feature Attribution Problem

- Let f_R be a black-box ranking model. For query \vec{q} and a set of documents $D = \{\vec{d}_1, \dots, \vec{d}_k\}$, the model produces an ordered list $f_R(\vec{q}, D)$.
- Given instance (\vec{q}, D) , objective is to compute post-hoc feature attributions $\phi_B(f_B, \vec{x})$, where $\vec{x} = (\vec{q}, D)$.

Challenges with Existing Methods

Inconsistencies in Empirical Systems:

- ▶ Extensions of classification/regression methods, like EXS/Rank-LIME, produce contradictory attributions.
- ▶ DeepSHAP shows low correlation between attributions for the same query, using different reference values.
- ▶ Methods fail to be consistent with basic sanity checks.

Proposed Solution

Introduce RankSHAP, an axiomatic Shapley value-based framework for generalizable, consistent, and human-aligned feature attributions.

RankSHAP Framework : Axioms

Desirable Axioms for Ranking Effectiveness Metrics:

■ Relevance Sensitivity, Position Sensitivity

Generalized Ranking Effectiveness Metric (GREM) (Theorem 1)

An effectiveness metric satisfies *Relevance* and *Position Sensitivity* if and only if it can be represented as

$$GREM_n = \sum_{j=1}^n g(rel_j) \cdot h(j)$$

where $g(rel_i)$ is a non-decreasing function and h(j) is a non-increasing function.

Desirable Shapley Properties for Ranking Attributions:

Rank-Efficiency, Rank-Missingness, Rank-Symmetry, Rank-Monotonicity

RankSHAP Framework: Shapley Value

The Ranking Shapley Value (Theorem 2)

Let V_R be a ranking effectiveness metric that belongs to $GREM_n$.

The Shapley value ϕ_R , computed with respect to V_R , is the **unique** feature attribution that satisfies the Shapley ranking axioms.

$$\phi_R(f_R, \vec{x}, i) = \sum_{S \subseteq M \setminus f(i)} \frac{|S|! \, (m - |S| - 1)!}{m!} \left[V_R \big(f_R(S \cup \{i\}, \vec{x}) \big) - V_R \big(f_R(S, \vec{x}) \big) \right],$$

KernelSHAP approximation

$$L(f_R,g,\pi_{\vec{x}}) = \sum_{\vec{z},\vec{z}} [\mathit{NDCG}(f_R(\vec{z})) - \mathit{NDCG}(g(\vec{z}))]^2 \pi_{\vec{x}}(\vec{z})$$

RankSHAP Framework : Axiomatic Analysis

$$\begin{split} L_{\text{RANKLIME}}(f_R, g, \pi_{\vec{x}}) &= \sum_{\vec{z} \in Z} ApproxNDCG(f_R(\vec{z}), g(\vec{z})) \ \pi_{\vec{x}}(\vec{z}) \\ L_{\text{RANKINGSHAP}}(f_R, g, \pi_{\vec{x}}) &= \sum_{\vec{z} \in Z} [\tau(f_R(\vec{z}), g(\vec{z}))]^2 \ \pi_{\vec{x}}(\vec{z}) \\ L_{\text{RANKSHAP}}(f_R, g, \pi_{\vec{x}}) &= \sum_{\vec{z} \in Z} [NDCG(f_R(\vec{z})) - NDCG(g(\vec{z}))]^2 \ \pi_{\vec{x}}(\vec{z}) \end{split}$$

Table 1 – Analyzing competing attribution methods for axiomatic compliance.

Algorithm	R-Efficiency	R-Missingness	R-Symmetry	R-Monotonicity
EXS	×	×	×	X
RankLIME	×	×	×	X
RankingSHAP	×	×	✓	X
RankSHAP	✓	✓	✓	✓

RankSHAP Experiments: Key Insights

- Across Systems: RankSHAP outperforms competitors by:
 - ▶ 25.78% on Fidelity and 19.68% on weighted Fidelity.
 - ▶ Consistently demonstrates positive correlation with original rankings (except Random).
- Impact of Document Set Size :
 - ▶ 20% drop from 10 to 20 documents and 14.6% drop from 20 to 100 documents.
 - ▶ Performance declines logarithmically with document set size.
- Across Datasets :
 - ▶ Performance 5.7% lower on Robust04 compared to MS MARCO.
 - ▶ Lower performance attributed to dataset size and cross-dataset fine-tuning.
- Across Ranking Models:
 - ▶ Best performance on BM25. Fidelity on BERT/T5 is 13%-15% lower than BM25.
 - ▶ Slightly better performance on LLAMA2 compared to BERT/T5.

RankSHAP: User Study

Goal: Evaluate if attributions help understand *why* items are ranked a particular way.

Tasks:

- 1 Reorder passages by **perceived importance** (using attributions).
- **2** Estimate the **query** from displayed feature attributions.

Table 2 – Higher is better (Fidelity & Semantic Sim.)

	Random	EXS	LIME	RiSHAP	Ours
Q1 (τ)	0.23	0.43	0.47	0.52	0.56
Q2 (Sim)	0.30	0.48	0.52	0.58	0.69

Thank you!

Questions? Feel free to reach out at $\frac{tchowdhury@cs.umass.edu}{}$