Google Cloud

Learn-by-interact: A Data-Centric Framework For Self-Adaptive Agents in Realistic Environments

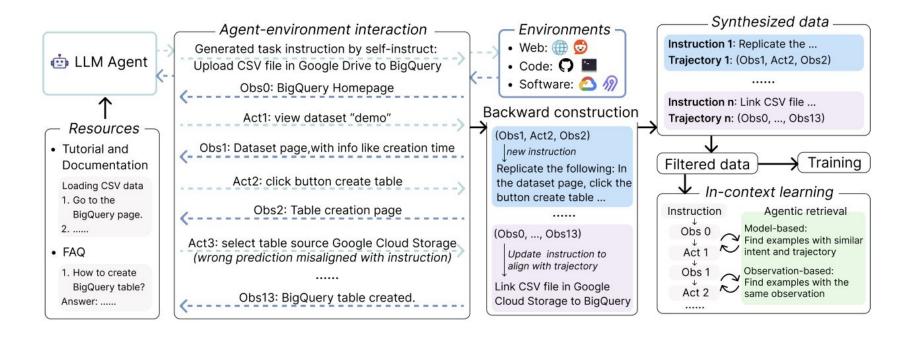
Hongjin Su¹², Ruoxi Sun¹, Jinsung Yoon¹, Pengcheng Yin¹, Tao Yu², Sercan Arik¹

¹Google, ²The University of Hong Kong

Motivation

- LLMs have great potential for assisting humans with various tasks in digital settings, such as editing images, performing data analysis, resolving software engineering issues, and navigating commercial platforms.
- Low performance in realistic scenarios, e.g., 38% in os, 16% in professional software
- Insufficient data and difficulties for humans to annotate long trajectories in complex environments

Data synthesis pipeline



Algorithm 1: Agent data synthesis

```
T.append(E.get observation())
1: Input: LLM: Large Language Model; E: environment; 14:
   Doc: standard resources like documentation; N: the num- 15.
                                                                    // backward construction
   ber of instructions to generate per document; F: data
                                                                    for i in range(0, len(T) - 1, 2) do
   filter.
                                                                        for j in range(i + 2, len(T), 2) do
                                                       17:
2: Initialization: D = []: synthesized data.
3: for d in Doc do
                                                       18:
                                                                            T' = T[i:j]
      // self-instruct to generate N task instructions
                                                                            I' = LLM(T')
                                                       19:
      Instructions = LLM(d, N)
                                                                            D.append([I',T'])
                                                       20:
6:
      for I in Instructions do
                                                       21:
                                                                        end for
         E.reset()
         T = [] // initialize interaction trajectory
                                                       22:
                                                                    end for
         while not E.finished() do
                                                       23:
                                                                end for
             o = E.get observation()
10:
                                                       24: end for
11:
             a = LLM(I, T, o)
                                                       25: D = F(D) // Filter low-quality data
12:
             T += [o, a]
                                                       26: Return: D
13:
          end while
```

Filtering

- Remove duplicate states
- LLM committee check: coherent, natural, reasonable, aligned with instructions

Data statistics

	SWE-bench	WebArena	OSWorld	Spider2-V
Documents	6,464	3,578	7,362	11,231
Raw trajectories	4,568	3,967	1,125	1,226
Examples	41,237	32,319	19,688	21,525
Filtered examples	10,232	10,456	11,782	10,169

Algorithm 2: Agentic retrieval

- 1: **Input:** *LLM*: Large Language Model; *E*: environment; *D*: synthesized data; *OR*: observation retrieval model; *RM*: dense retriever; *I*: task instruction; *m*1: maximum number of examples from observation-based retrieval; *m*2: maximum number of examples from model-based retrieval.
- 2: **Initialization**: H = []: interaction history; R: retrieved examples.

12: end while

Evaluation datasets

- SWE-bench (Jimenez et al., 2023) is an evaluation benchmark on realistic software engineering problems from realistic Github issues. We use the verified version by default throughout the experiments.
- Webarena (Zhou et al., 2023b) evaluates agent capabilities to perform tasks in the web environments such as e-commerce, social forum discussion, and beyond.
- OSWorld (Xie et al., 2024) is an integrated environment for assessing open-ended computer tasks, which involve diverse applications like Terminal, Chrome, etc.
- Spider2-V (Cao et al., 2024) is a multimodal agent benchmark focusing on professional data science and engineering workflows, which includes BigQuery, Airbyte and more.

Baselines

- Baseline: The vanilla prediction pipeline in each benchmark that includes the task instruction, interaction history and the state observation in the prompt. See more implementation details in Appendix A.
- RAG: The conventional RAG pipeline that first retrieves from the resources like documentation based on the instruction, and augments LLMs with the retrieved content.
- Data distill: We follow the same pipeline to synthesize data in Algorithm 1 except backward construction (replace lines 15-22 with D.append(I,T)), and follow Algorithm 2 during the evaluation.
- Reflexion (Shinn et al., 2024): A general framework to reinforce language agents through linguistic feedback from both executors and LLMs.
- Language Agent Tree Search (LATS) (Zhou et al., 2023a): It integrates the combinatorial tree search into expanding ReAct (Yao et al., 2022b) and combine agent online reasoning, acting and planning throughout the trajectory.

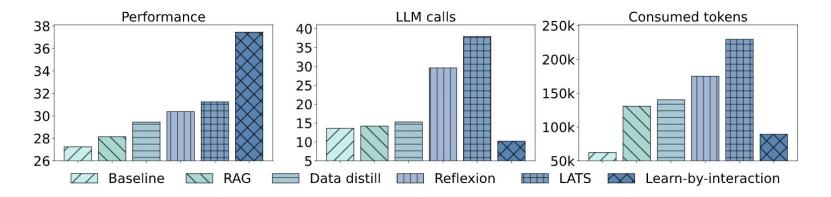
Training-free evaluation

Benchmark →	SWE	Web	OS	Spider2-V	SWE	Web	OS	Spider2-V	
Approach ↓	Gemini-1.5-pro					Claude-3.5-sonnet			
	Existing approaches								
Baseline	13.3	17.9	4.9	8.3	51.2	35.8	12.4	8.4	
RAG	13.7	19.5	5.1	9.1	51.8	36.9	12.8	9.2	
Data distill	14.0	19.8	5.7	9.1	54.0	39.2	12.9	9.7	
Reflexion	14.3	20.2	5.7	9.3	54.4	40.4	15.6	10.5	
LATS	15.3	21.0	6.5	11.3	55.2	41.3	16.8	11.2	
	Ours								
Learn-by-interact	18.7	25.6	10.3	16.4	60.0	48.0	22.5	16.6	
Δ over baseline	+5.4	+7.7	+5.4	+8.1	+8.8	+12.2	+10.1	+8.2	

Training-based evaluation

Benchmark →	Web	OS	Web	OS	Web	OS	Web	OS	
$Model \rightarrow$	Codegemma-7B Cod			Codestral-22B Co		Codegemma-7B		Codestral-22B	
Approach ↓		Before tuning After tuning							
	Existing approaches								
Baseline	3.3	0.0	4.7	2.2	-	-	-	-	
Data distill	4.2	0.0	5.8	2.7	6.2	1.4	10.2	5.4	
	Ours								
Learn-by-interact Δ over baseline	7.6 +4.3	3.5 +3.5	9.9 +5.2	5.4 +3.2	14.6 +11.3	6.5 +6.5	24.2 +19.5	11.7 +9.5	

Inference efficiency



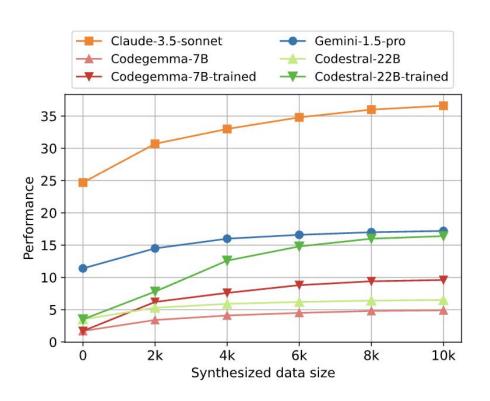
The impact of retrieval

Benchmark →	SWE	Web	OS	Spider2-V	SWE	Web	OS	Spider2-V
Retrieval ↓		Gemi	ni-1.5-	pro	Claude-3.5-sonnet			
No retrieval	13.3	17.9	4.9	8.3	51.2	35.8	12.4	8.4
Instruction-based	14.7	21.6	7.0	10.2	52.4	36.6	15.0	9.6
Observation-based	16.3	23.5	8.7	14.6	53.6	42.5	17.2	10.5
Model-based	17.0	24.3	9.5	15.4	57.8	44.8	20.3	13.7
Ours	18.7	25.6	10.3	16.4	60.0	48.0	22.5	16.6

Data granularity

Benchmark →	SWE	Web	OS	Spider2-V	Web	OS
Granularity ↓		Claude	Codestral-22B			
Baseline	51.2	35.8	12.4	8.4	4.6	2.2
Short	54.2	39.4	17.9	10.8	13.5	4.9
Medium	53.6	38.8	16.6	9.7	12.6	4.0
Long	52.2	37.6	15.2	9.2	10.6	3.4
Short+Medium	54.6	41.2	18.8	11.3	14.6	5.7
Short+Long	54.0	40.5	17.8	10.7	14.4	5.3
Medium+Long	53.8	38.6	17.2	10.4	13.2	4.5
Short+Medium+Long	55.0	42.0	19.8	12.3	15.4	6.3

Scaling laws



Thank you!