THE SUPERPOSITION OF DIFFUSION MODELS

using the Itô Density Estimator

Marta Skreta* • Lazar Atanackovic* • Joey Bose Alexander Tong • Kirill Neklyudov

We are in the "Cambrian Explosion" of diffusion models

Stable Diffusion

Midjourney IMAGES

Imagen DALL-E

AUDIO

VIDEOS

Stable Video

Luma AI

Sora Pika Labs

ROBOTICS

WEATHER

AlphaFold 3

Chai-1

GenMol

PROTEINS & MOLECULES

RFdiffusion

EDM

EvoDiff

DiffDock

MatterGen

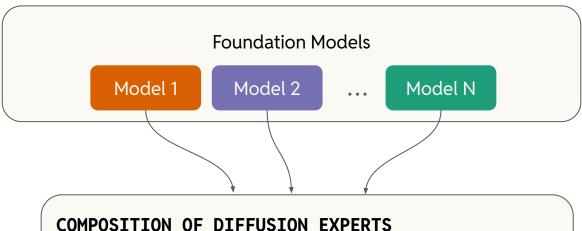
HEALTHCARE

How can we get the benefits of all these models?

Should we just keep training larger and larger models?

Not always possible!

What about combining multiple models together?

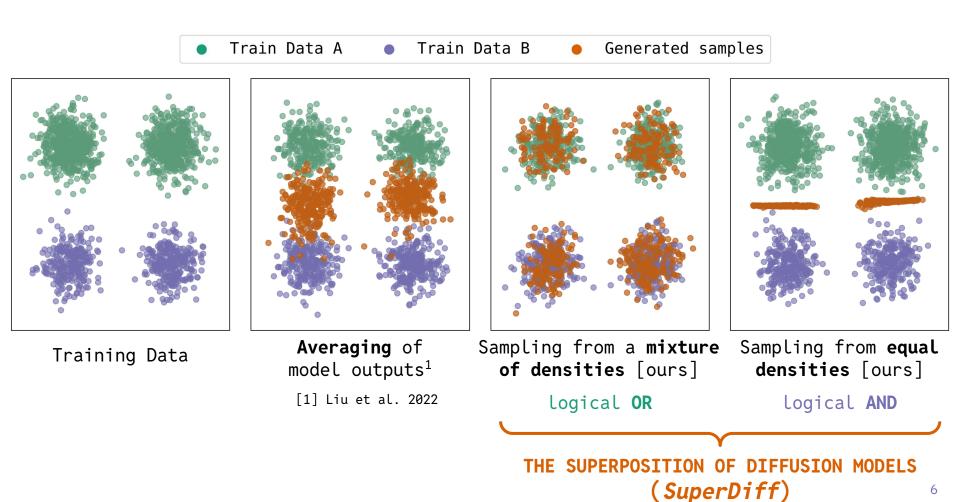


COMPOSITION OF DIFFUSION EXPERTS

- Each model is an "expert"
- Combine experts to increase their capacity!
- We've seen this work well in other domains

RESEARCH QUESTION:

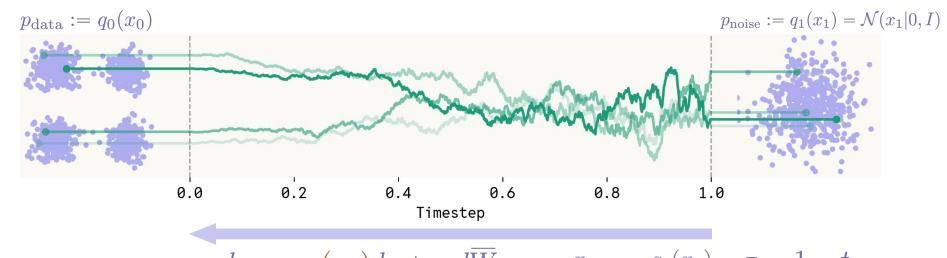
Can we combine pre-trained diffusion models **solely at inference** in a theoretically sound and efficient manner?



What are Diffusion Models?

Goal: generate samples from some data distribution $p_{\text{data}} \in \mathbb{P}(\mathbb{R}^d)$

Forward Process:
$$dx_t = f_t(x_t)dt + g_t dW_t, \quad x_0 \sim q_0(x_0)$$



Reverse Process: (noise -> data)

$$dx_{\tau} = \underbrace{u_{\tau}(x_{\tau})} d\tau + g_t d\overline{W}_{\tau} \qquad x_{\tau=0} \sim q_1(x_0) \quad \tau = 1 - t$$
 Vector field: $-f_t(x_{\tau}) + g_t^2 \overline{\nabla \log q_t(x_{\tau})}$ Score (learned function)

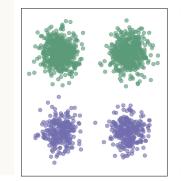
SuperDiff (OR)

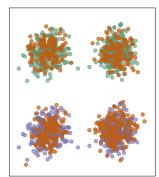
Train Data A Train Data B Generated samples

Training Data

Sampling from a mixture
 of densities [ours]

Sampling proportional to densities Logical OR





Given different processes and the corresponding vector fields:

$$\frac{\partial q_t^i(x)}{\partial t} = -\langle \nabla_x, q_t^i(x) u_t^i(x) \rangle + \frac{g_t^2}{2} \Delta q_t^i(x), \quad i = 1, \dots, M$$

We want the model that samples from the mixture:

$$\frac{\partial q_t(x)}{\partial t} = -\langle \nabla_x, q_t^i(x) u_t^i(x) \rangle + \frac{g_t^2}{2} \Delta q_t^i(x), \quad q_t(x) = \frac{1}{M} \sum_{i=1}^M q_t^i(x), \quad u_t(x) = \frac{1}{M} \left[\sum_{i=1}^M q_t^i(x) \right], \quad u_t(x) = \frac{1}{M} \left[\sum_{i=1}^M q_t^i(x) \right], \quad u_t(x) = \frac{1}{M} \left[\sum_{i=1}^M q_t^i(x) \right], \quad u_t(x) = \frac{1}{M} \left[\sum_{i=1}^M q_t^i(x) \right].$$

Reverse SDE:

$$dx_{\tau} = u_{\tau}(x_{\tau})d\tau + g_t d\overline{W}_{\tau}$$

where vector fields are weighted proportionally to densities:

$$u_ au(x_ au) = \sum_{i=1}^M rac{q_t^i(x)}{\sum_i q_t^j(x)} u_ au^i(x_ au)$$
 for M models \sim

problem

solution

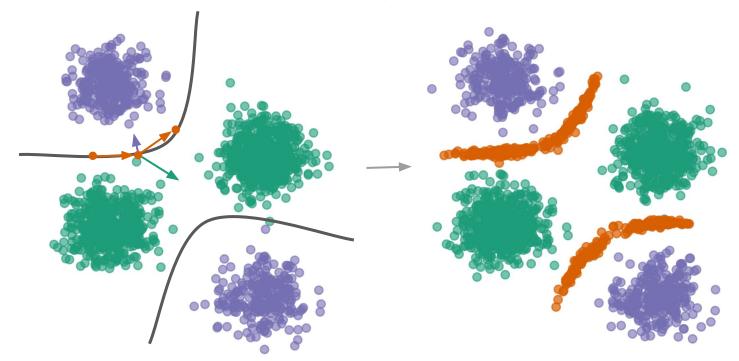
SuperDiff (AND)

Train Data A Train Data B Generated samples

Training Data

Sampling from equal densities [ours]

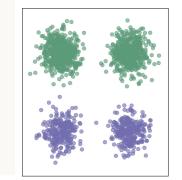
How do we sample from equal densities?

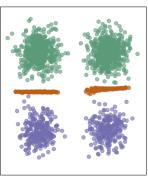


Reverse SDE:

$$dx_{\tau} = u_{\tau}(x_{\tau})d\tau + g_t d\overline{W}_{\tau}$$

Sampling from equal densities Logical AND





Reverse SDE:

$$dx_{\tau} = u_{\tau}(x_{\tau})d\tau + g_t d\overline{W}_{\tau}$$

Weight vector fields such that densities are equal:

$$q_{t+dt}^{1}(x_{t+dt}) = q_{t+dt}^{2}(x_{t+dt})$$

$$q_{1-\tau-dt}^{1}(x_{\tau} + (\sum_{j} \kappa_{j} u_{j}(x_{\tau}))dt) = q_{1-\tau-dt}^{2}(x_{\tau} + (\sum_{j} \kappa_{j} u_{j}(x_{\tau}))dt) \quad \text{such that} \quad \sum_{j} \kappa_{j} = 1$$

For two models:

$$q_{1-\tau-dt}^{1}(x_{\tau} + (\kappa_{1}u_{1}(x_{\tau}) + (1-\kappa_{1})u_{2}(x_{\tau}))dt) = q_{1-\tau-dt}^{2}(x_{\tau} + (\kappa_{1}u_{1}(x_{\tau}) + (1-\kappa_{1})u_{2}(x_{\tau}))dt)$$

18

How can we get the densities???

ODE Case

Need:
$$\log q_{1-\tau-dt}(x_{\tau}) = \log q_{1-\tau}(x_{\tau}) + d \log q_{1-\tau}(x_{\tau})$$

Proposition 5. [Smooth density estimator] For the integral curve x(t) solving $dx/dt = u_t(x_t)$, and the density $q_t^i(x(t))$ satisfying the continuity equation $\frac{\partial}{\partial t}q_t^i(x) = -\langle \nabla_x, q_t^i(x)v_t^i(x) \rangle$, the log-density along the curve changes according to the following ODE

$$\frac{d}{dt}\log q_t^i(x(t)) = -\langle \nabla_x, v_t^i(x) \rangle - \langle \nabla_x \log q_t^i(x), v_t^i(x) - u_t(x) \rangle. \tag{10}$$

$$dz(t, x(t)) = \frac{\partial}{\partial t}z(t, x(t))dt + \frac{\partial}{\partial x}z(t, x(t))dx$$

change in time

change in position

SDE Case

Need:
$$\log q_{1-\tau-dt}(x_{\tau}) = \log q_{1-\tau}(x_{\tau}) + d \log q_{1-\tau}(x_{\tau})$$

SDE gives us an extra noise term - can't ignore!

Fokker-Planck equation

$$dz(t,x(t)) = \frac{\partial}{\partial t}z(t,x(t))dt + \frac{\partial}{\partial x}z(t,x(t))dx + \frac{1}{2}\frac{\partial^2}{\partial x^2}z(t,x(t))(dx)^2$$
(Itô's Lemma!)
$$d\log q_{1-\tau}(x_\tau) = \frac{\partial}{\partial \tau}\log q_{1-\tau}(x_\tau)d\tau + \frac{\partial}{\partial x}\log q_{1-\tau}(x_\tau)dx_\tau + \frac{1}{2}\frac{\partial^2}{\partial x^2}\log q_{1-\tau}(x_\tau)(dx_\tau)^2$$

Score: $\nabla \log q_{1- au}(x_{ au})$ Laplacian: $\Delta \log q_{1- au}(x_{ au})$

Reverse step: $u_t(x_{\tau})d\tau + q_t d\overline{W}_{\tau}$

Itô Density Estimator

Need:
$$\log q_{1-\tau-dt}(x_{\tau}) = \log q_{1-\tau}(x_{\tau}) + d \log q_{1-\tau}(x_{\tau})$$

$$d\log q_{1-\tau}(x_{\tau}) = \underbrace{\frac{\partial}{\partial \tau}\log q_{1-\tau}(x_{\tau})d\tau} + \nabla\log q_{1-\tau}(x_{\tau})u_{t}(x_{\tau})d\tau + \underbrace{\frac{1}{2}\Delta\log q_{1-\tau}(x_{\tau})(g_{t}^{2})(d\overline{W})^{2}}_{}$$

Fokker-Planck equation

$$\frac{\partial}{\partial \tau} \log q_{1-\tau}(x_{\tau}) d\tau = (\langle \nabla, f_{1-\tau}(x_{\tau}) \rangle + \langle \nabla \log q_{1-\tau}(x_{\tau}), f_{1-\tau}(x_{\tau}) \rangle) d\tau - \frac{g_{1-\tau}^2}{2} \Delta \log q_{1-\tau}(x_{\tau}) d\tau - \frac{g_{1-\tau}^2}{2} ||\nabla \log q_{1-\tau}(x_{\tau})||^2 d\tau$$

No more Laplacian! Density estimation with no extra cost!

淋 Itô Density Estimator 🔆

Need:
$$\log q_{1-\tau-dt}(x_{\tau}) = \log q_{1-\tau}(x_{\tau}) + d \log q_{1-\tau}(x_{\tau})$$

$$d\log q_{1- au}(x_{ au}) = rac{\partial}{\partial au} \log q_{1- au}(x_{ au}) d au +
abla \log q_{1- au}(x_{ au}) d au$$

$$\frac{\partial}{\partial \tau} \log q_{1-\tau}(x_{\tau}) d\tau = (\langle \nabla, f_{1-\tau}(x_{\tau}) \rangle + \langle \nabla \log q_{1-\tau}(x_{\tau}), f_{1-\tau}(x_{\tau}) \rangle) d\tau - \frac{g_{1-\tau}^2}{2} \Delta \log q_{1-\tau}(x_{\tau}) d\tau - \frac{g_{1-\tau}^2}{2} ||\nabla \log q_{1-\tau}(x_{\tau})||^2 d\tau$$

 $d\log q_{1-\tau}(x_{\tau}) = \langle dx_{\tau}, \nabla \log q_{1-\tau}(x_{\tau}) \rangle + \left(\langle \nabla, f_{1-\tau}(x_{\tau}) \rangle + \left\langle u_{1-\tau}(x_{\tau}), \nabla \log q_{1-\tau}(x_{\tau}) \right\rangle \right) d\tau$

$$d\log q_{1-\tau}(x_{\tau}) = \frac{\partial}{\partial \tau} \log q_{1-\tau}(x_{\tau}) d\tau + \nabla \log q_{1-\tau}(x_{\tau}) u_t(x_{\tau}) d\tau + \frac{1}{2} \Delta \log q_{1-\tau}(x_{\tau}) (g_t^2) (d\overline{W}) d\tau$$
Folkkon Planck equation

Itô Density Estimator

Need:
$$\log q_{1-\tau-dt}(x_{\tau}) = \log q_{1-\tau}(x_{\tau}) + d \log q_{1-\tau}(x_{\tau})$$

$$d\log q_{1-\tau}(x_{\tau}) = \frac{\partial}{\partial \tau} \log q_{1-\tau}(x_{\tau}) d\tau + \nabla \log q_{1-\tau}(x_{\tau}) u_t(x_{\tau}) d\tau + \frac{1}{2} \Delta \log q_{1-\tau}(x_{\tau}) (g_t^2) (d\overline{W})^2$$

This can be anything!!! Not just vector field of reverse dynamics!!!

Expand & collect terms:

$$d\log q_{1-\tau}(x_{\tau}) = \left\{ dx_{\tau}, \nabla \log q_{1-\tau}(x_{\tau}) \right\} + \left(\left\langle \nabla, f_{1-\tau}(x_{\tau}) \right\rangle + \left\langle u_{1-\tau}(x_{\tau}), \nabla \log q_{1-\tau}(x_{\tau}) \right\rangle \right) d\tau$$

Using this density estimator is ~5x faster than computing div. & 30% less memory on image experiments

Some notes on SuperDiff

BENEFITS V

- Principled approach (continuity equation is satisfied)
- Architecture-agnostic
- Can work for any number of models

CAUTION /

 For exact density computation, assumption is that learned score is true score

Algorithm 1: SUPERDIFF pseudocode (for **OR** and **AND** operations)

Input: M pre-trained score models $\nabla_x \log q_t^i(x)$, the parameters of the schedule α_t, σ_t , stepsize $d\tau > 0$, temperature parameter T, bias parameter ℓ , and initial noise $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

$$\begin{aligned} & \textbf{for } \tau = 0, \dots, 1 \, \textbf{do} \\ & t = 1 - \tau \,, \;\; \varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ & \kappa_{\tau}^{i} \leftarrow \begin{cases} & \text{softmax}(T \log q_{t}^{i}(x_{\tau}) + \ell) \; / / \;\; \text{for OR according to Prop. 3} \\ & \text{solve Linear Equations } / / \;\; \text{for AND according to Prop. 6} \end{cases} \\ & u_{t}(x) \leftarrow \sum_{i=1}^{M} \kappa_{\tau}^{i} \nabla \log q_{t}^{i}(x_{\tau}) \\ & dx_{\tau} \leftarrow \left(-f_{1-\tau}(x_{\tau}) + g_{1-\tau}^{2} u_{t}(x) \right) d\tau + g_{1-\tau} d\overline{W}_{\tau} \;\; / / \;\; \text{using Prop. 1} \end{cases} \\ & x_{\tau+d\tau} \leftarrow x_{\tau} + dx_{\tau} \\ & d \log q_{1-\tau}(x_{\tau}) = \left\langle dx_{\tau}, \nabla \log q_{1-\tau}(x_{\tau}) \right\rangle + \left(\left\langle \nabla, f_{1-\tau}(x_{\tau}) \right\rangle + \left\langle f_{1-\tau}(x_{\tau}) - \frac{g_{1-\tau}^{2}}{2} \nabla \log q_{1-\tau}(x_{\tau}), \nabla \log q_{1-\tau}(x_{\tau}) \right\rangle \right) d\tau \;\; / / \;\; \text{using Thm. 1} \end{aligned}$$

return x

EXPERIMENTS

[1] Unconditional Image Generation: Validating the Method

CIFAR-10

- Divide CIFAR-10 training set into two halves:
 - Part A: First 5 labelsPart B: Last 5 labels
- Train separate diffusion model on each half

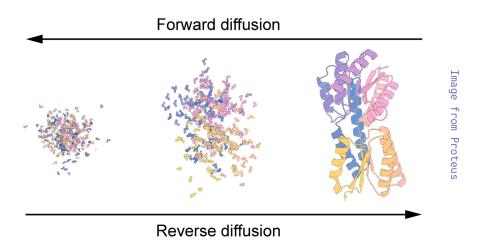
Novelty, fidelity, & diversity

	$FID (\downarrow)$	IS (†)	$\text{FLD }(\downarrow)$
model_A	15.33	7.98	15.47 ± 0.18
model_B	13.50	7.98	18.54 ± 0.23
$\operatorname{model}_{A \cup B}$	3.50	9.14	7.51 ± 0.11
$\operatorname{model}_{A \; \mathtt{OR} \; B}$	3.99	9.36	5.29 ± 0.14
SuperDiff (OR)	4.00	9.36	5.33 ± 0.05
SUPERDIFF $_{T=100}$ (OR)	4.00	9.48	$\boldsymbol{5.20 \pm 0.11}$

[2] Unconditional Protein Generation

Q: I have two models that generate proteins using different datasets and/or architectures — how do I combine them?

Goal: Generate 3D coordinates of protein backbones



Two protein models:

- Proteus¹ (more designable)
- FrameDiff² (more diverse)

^[1] Wang et al. ICML, 2024.

^[2] Yim et al. ICML, 2023.

Goal: Generate 3D coordinates of protein backbones

	Is there a sequence that folds into the structure?	How similar is the protein to other sequences in the training data?		How similar are the proteins to each other?	
	Designability	Novelty		Diversity	
	$< 2 m \AA$ scRMSD (\uparrow)	$<0.3~{ m scTM}$ (\uparrow)	$\max_{(\downarrow)}$	Pairwise scTM (\(\))	Max. cluster (†)
FrameDiff Proteus	0.392 ± 0.03 0.928 ± 0.02	0.016 ± 0.01 0.020 ± 0.01	0.570 ± 0.02 0.536 ± 0.01	0.337 ± 0.02 0.312 ± 0.01	0.326 ± 0.05 0.217 ± 0.02
Average of scores	0.740 ± 0.03	0.024 ± 0.01	0.511 ± 0.01	0.310 ± 0.01	0.253 ± 0.01
SUPERDIFF _{$\ell=0$} (OR) SUPERDIFF _{$\ell=0$} (AND)	$egin{array}{l} 0.752 \pm 0.03 \ 0.752 \pm 0.03 \end{array}$	$0.008 \pm 0.01 \\ \hline 0.040 \pm 0.01$	0.547 ± 0.01 0.521 ± 0.01	$\begin{array}{c} 0.309 \pm 0.02 \\ 0.306 \pm 0.01 \end{array}$	$0.268 \pm 0.02 \ 0.256 \pm 0.01$
SuperDiff _{$\ell=1$} (OR)	$\boxed{0.976 \pm 0.01}$	$\boldsymbol{0.024 \pm 0.01}$	0.528 ± 0.01	$\boldsymbol{0.307 \pm 0.02}$	0.246 ± 0.03

[3] Conditional Image Generation

Q: How would you generate an image of a flamingo that looks like a candy cane?

Prompt: "A flamingo that looks like a candy cane."

Stable Diffusion V1.4

Stable Diffusion v1.4

*Joint prompting: "A OBJECT_1 that looks like a OBJECT_2."

Stable Diffusion v1.4

Cosine sim. of text & Human preference img embeds alignment LLM-based QA Min. $CLIP(\uparrow)$ Min. TIFA (\uparrow) Min. ImageReward (↑) 23.87-1.6227.5824.23-1.5732.48 -1.3939.92 24.79

Joint prompting

Average of scores

SUPERDIFF (AND)

Joint prompting

Avg. of outputs

Prompt 1: "This image looks like a flamingo."
Prompt 2: "This image looks like a candy cane."

SuperDiff(AND)

[4] Conditional Molecule Generation

Q: How would you generate a molecule that:

- inhibits the enzyme GSK3β and
- has drug-likeness?

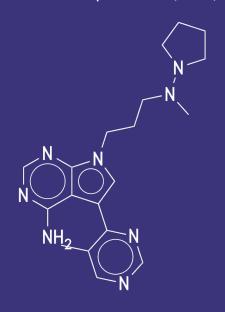
Model: LDMol

Prompt	GSK3β inhibition % (↑)	Drug-likeness % (↑)	Product of Properties (↑)	Val & Uniq %
"This molecule inhibits GSK3β."	0.411 ± 0.034	0.266 ± 0.058	0.107 ± 0.024	0.74
"This molecule looks like a drug."	0.033 ± 0.011	0.884 ± 0.008	0.030 ± 0.010	0.83
"This molecule inhibits GSK3β and looks like a drug."	0.287 ± 0.029	0.631 ± 0.050	0.171 ± 0.029	0.74
AVERAGE OF SCORES	0.287 ± 0.014	0.580 ± 0.020	0.154 ± 0.012	0.77
SuperDiff (AND)	0.277 ± 0.024	0.668 ± 0.027	0.177 ± 0.024	0.78

[1] Chang and Ye, 2024.

Model: LDMol

Joint prompting

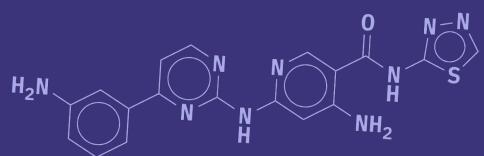


GSK3β: 0.39 QED: 0.74 GSK3β: 0.40 QED: 0.58 GSK3β: 0.53 QED: 0.71 Q: How would you generate a molecule that:

- inhibits the enzyme JNK3 AND
- inhibits the enzyme GSK3β?

Model: LDMol

Prompt	Min(JNK3, GSK3β) (↑)	Product of Properties (↑)
"This molecule inhibits JNK3."	0.135 ± 0.011	0.057 ± 0.007
"This molecule inhibits GSK3β."	0.183 ± 0.014	0.056 ± 0.011
"This molecule inhibits JNK3 and inhibits GSK3 β ."	0.186 ± 0.045	0.071 ± 0.022
AVERAGE OF SCORES	0.199 ± 0.012	0.073 ± 0.013
SuperDiff(AND)	0.209 ± 0.035	0.080 ± 0.025



Top-1 SuperDiff (AND)

JNK3: 0.52

GSK3β: 0.69

Marta Skreta*

Lazar Atanackovic*

Joey Bose

Alexander Tong

Kirill Neklyudov